MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqr Structured version   Unicode version

Theorem lgsqr 22685
Description: The Legendre symbol for odd primes is  1 iff the number is not a multiple of the prime (in which case it is  0, see lgsne0 22672) and the number is a quadratic residue  mod  P (it is  -u 1 for nonresidues by the process of elimination from lgsabs1 22673). Given our definition of the Legendre symbol, this theorem is equivalent to Euler's criterion. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqr  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  <->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
Distinct variable groups:    x, A    x, P

Proof of Theorem lgsqr
StepHypRef Expression
1 eldifi 3478 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 466 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 prmz 13767 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
42, 3syl 16 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  ZZ )
5 simpl 457 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  A  e.  ZZ )
6 gcdcom 13704 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ )  ->  ( P  gcd  A
)  =  ( A  gcd  P ) )
74, 5, 6syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  gcd  A )  =  ( A  gcd  P ) )
87eqeq1d 2451 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  gcd  A )  =  1  <->  ( A  gcd  P )  =  1 ) )
9 coprm 13786 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
102, 5, 9syl2anc 661 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
11 lgsne0 22672 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( A  /L P )  =/=  0  <->  ( A  gcd  P )  =  1 ) )
125, 4, 11syl2anc 661 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =/=  0  <->  ( A  gcd  P )  =  1 ) )
138, 10, 123bitr4d 285 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -.  P  ||  A  <->  ( A  /L P )  =/=  0 ) )
1413necon4bbid 2676 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  <->  ( A  /L P )  =  0 ) )
15 0ne1 10389 . . . . . 6  |-  0  =/=  1
16 neeq1 2616 . . . . . 6  |-  ( ( A  /L P )  =  0  -> 
( ( A  /L P )  =/=  1  <->  0  =/=  1
) )
1715, 16mpbiri 233 . . . . 5  |-  ( ( A  /L P )  =  0  -> 
( A  /L
P )  =/=  1
)
1814, 17syl6bi 228 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  ->  ( A  /L P )  =/=  1 ) )
1918necon2bd 2660 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  -.  P  ||  A ) )
20 lgsqrlem5 22684 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  ( A  /L P )  =  1 )  ->  E. x  e.  ZZ  P  ||  (
( x ^ 2 )  -  A ) )
21203expia 1189 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  E. x  e.  ZZ  P  ||  (
( x ^ 2 )  -  A ) ) )
2219, 21jcad 533 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
23 simprl 755 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  e.  ZZ )
2423zred 10747 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  e.  RR )
25 absresq 12791 . . . . . . 7  |-  ( x  e.  RR  ->  (
( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
2624, 25syl 16 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
2726oveq1d 6106 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  ( ( x ^ 2 )  /L P ) )
28 simplr 754 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  A )
291ad3antlr 730 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  Prime )
3029, 3syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  ZZ )
31 zsqcl 11936 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
3223, 31syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( x ^ 2 )  e.  ZZ )
33 simplll 757 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  A  e.  ZZ )
34 simprr 756 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  ||  ( ( x ^ 2 )  -  A ) )
35 dvdssub2 13570 . . . . . . . . . . 11  |-  ( ( ( P  e.  ZZ  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  /\  P  ||  ( ( x ^ 2 )  -  A ) )  ->  ( P  ||  ( x ^ 2 )  <->  P  ||  A ) )
3630, 32, 33, 34, 35syl31anc 1221 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  (
x ^ 2 )  <-> 
P  ||  A )
)
3728, 36mtbird 301 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  ( x ^ 2 ) )
38 2nn 10479 . . . . . . . . . . 11  |-  2  e.  NN
3938a1i 11 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
2  e.  NN )
40 prmdvdsexp 13800 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( x ^
2 )  <->  P  ||  x
) )
4129, 23, 39, 40syl3anc 1218 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  (
x ^ 2 )  <-> 
P  ||  x )
)
4237, 41mtbid 300 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  x )
43 dvds0 13548 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  P  ||  0 )
4430, 43syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  ||  0 )
45 breq2 4296 . . . . . . . . . 10  |-  ( x  =  0  ->  ( P  ||  x  <->  P  ||  0
) )
4644, 45syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( x  =  0  ->  P  ||  x
) )
4746necon3bd 2645 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  P  ||  x  ->  x  =/=  0
) )
4842, 47mpd 15 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  =/=  0 )
49 nnabscl 12813 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  -> 
( abs `  x
)  e.  NN )
5023, 48, 49syl2anc 661 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( abs `  x
)  e.  NN )
5150nnzd 10746 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( abs `  x
)  e.  ZZ )
52 gcdcom 13704 . . . . . . . 8  |-  ( ( ( abs `  x
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( abs `  x
)  gcd  P )  =  ( P  gcd  ( abs `  x ) ) )
5351, 30, 52syl2anc 661 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
)  gcd  P )  =  ( P  gcd  ( abs `  x ) ) )
54 dvdsabsb 13552 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  x  e.  ZZ )  ->  ( P  ||  x  <->  P 
||  ( abs `  x
) ) )
5530, 23, 54syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  x  <->  P 
||  ( abs `  x
) ) )
5642, 55mtbid 300 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  ( abs `  x ) )
57 coprm 13786 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( abs `  x )  e.  ZZ )  ->  ( -.  P  ||  ( abs `  x )  <->  ( P  gcd  ( abs `  x
) )  =  1 ) )
5829, 51, 57syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  P  ||  ( abs `  x )  <-> 
( P  gcd  ( abs `  x ) )  =  1 ) )
5956, 58mpbid 210 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  gcd  ( abs `  x ) )  =  1 )
6053, 59eqtrd 2475 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
)  gcd  P )  =  1 )
61 lgssq 22674 . . . . . 6  |-  ( ( ( abs `  x
)  e.  NN  /\  P  e.  ZZ  /\  (
( abs `  x
)  gcd  P )  =  1 )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  1 )
6250, 30, 60, 61syl3anc 1218 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  1 )
63 prmnn 13766 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6429, 63syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  NN )
65 moddvds 13542 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  <-> 
P  ||  ( (
x ^ 2 )  -  A ) ) )
6664, 32, 33, 65syl3anc 1218 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  <-> 
P  ||  ( (
x ^ 2 )  -  A ) ) )
6734, 66mpbird 232 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( x ^
2 )  mod  P
)  =  ( A  mod  P ) )
6867oveq1d 6106 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( A  mod  P
)  /L P ) )
69 eldifsni 4001 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
7069ad3antlr 730 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  =/=  2 )
7170necomd 2695 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
2  =/=  P )
72 2z 10678 . . . . . . . . . 10  |-  2  e.  ZZ
73 uzid 10875 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
7472, 73ax-mp 5 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  2 )
75 dvdsprm 13785 . . . . . . . . . 10  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
2  ||  P  <->  2  =  P ) )
7675necon3bbid 2642 . . . . . . . . 9  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  ( -.  2  ||  P  <->  2  =/=  P ) )
7774, 29, 76sylancr 663 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  2  ||  P 
<->  2  =/=  P ) )
7871, 77mpbird 232 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  2  ||  P )
79 lgsmod 22660 . . . . . . 7  |-  ( ( ( x ^ 2 )  e.  ZZ  /\  P  e.  NN  /\  -.  2  ||  P )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( x ^ 2 )  /L P ) )
8032, 64, 78, 79syl3anc 1218 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( x ^ 2 )  /L P ) )
81 lgsmod 22660 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  NN  /\  -.  2  ||  P )  -> 
( ( A  mod  P )  /L P )  =  ( A  /L P ) )
8233, 64, 78, 81syl3anc 1218 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( A  mod  P )  /L P )  =  ( A  /L P ) )
8368, 80, 823eqtr3d 2483 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( x ^
2 )  /L
P )  =  ( A  /L P ) )
8427, 62, 833eqtr3rd 2484 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( A  /L
P )  =  1 )
8584rexlimdvaa 2842 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  ( E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A )  ->  ( A  /L P )  =  1 ) )
8685expimpd 603 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) )  ->  ( A  /L P )  =  1 ) )
8722, 86impbid 191 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  <->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2606   E.wrex 2716    \ cdif 3325   {csn 3877   class class class wbr 4292   ` cfv 5418  (class class class)co 6091   RRcr 9281   0cc0 9282   1c1 9283    - cmin 9595   NNcn 10322   2c2 10371   ZZcz 10646   ZZ>=cuz 10861    mod cmo 11708   ^cexp 11865   abscabs 12723    || cdivides 13535    gcd cgcd 13690   Primecprime 13763    /Lclgs 22633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372  ax-inf2 7847  ax-cnex 9338  ax-resscn 9339  ax-1cn 9340  ax-icn 9341  ax-addcl 9342  ax-addrcl 9343  ax-mulcl 9344  ax-mulrcl 9345  ax-mulcom 9346  ax-addass 9347  ax-mulass 9348  ax-distr 9349  ax-i2m1 9350  ax-1ne0 9351  ax-1rid 9352  ax-rnegex 9353  ax-rrecex 9354  ax-cnre 9355  ax-pre-lttri 9356  ax-pre-lttrn 9357  ax-pre-ltadd 9358  ax-pre-mulgt0 9359  ax-pre-sup 9360  ax-addf 9361  ax-mulf 9362
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-nel 2609  df-ral 2720  df-rex 2721  df-reu 2722  df-rmo 2723  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-se 4680  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-isom 5427  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-of 6320  df-ofr 6321  df-om 6477  df-1st 6577  df-2nd 6578  df-supp 6691  df-tpos 6745  df-recs 6832  df-rdg 6866  df-1o 6920  df-2o 6921  df-oadd 6924  df-er 7101  df-ec 7103  df-qs 7107  df-map 7216  df-pm 7217  df-ixp 7264  df-en 7311  df-dom 7312  df-sdom 7313  df-fin 7314  df-fsupp 7621  df-sup 7691  df-oi 7724  df-card 8109  df-cda 8337  df-pnf 9420  df-mnf 9421  df-xr 9422  df-ltxr 9423  df-le 9424  df-sub 9597  df-neg 9598  df-div 9994  df-nn 10323  df-2 10380  df-3 10381  df-4 10382  df-5 10383  df-6 10384  df-7 10385  df-8 10386  df-9 10387  df-10 10388  df-n0 10580  df-z 10647  df-dec 10756  df-uz 10862  df-q 10954  df-rp 10992  df-fz 11438  df-fzo 11549  df-fl 11642  df-mod 11709  df-seq 11807  df-exp 11866  df-hash 12104  df-cj 12588  df-re 12589  df-im 12590  df-sqr 12724  df-abs 12725  df-dvds 13536  df-gcd 13691  df-prm 13764  df-phi 13841  df-pc 13904  df-struct 14176  df-ndx 14177  df-slot 14178  df-base 14179  df-sets 14180  df-ress 14181  df-plusg 14251  df-mulr 14252  df-starv 14253  df-sca 14254  df-vsca 14255  df-ip 14256  df-tset 14257  df-ple 14258  df-ds 14260  df-unif 14261  df-hom 14262  df-cco 14263  df-0g 14380  df-gsum 14381  df-prds 14386  df-pws 14388  df-imas 14446  df-divs 14447  df-mre 14524  df-mrc 14525  df-acs 14527  df-mnd 15415  df-mhm 15464  df-submnd 15465  df-grp 15545  df-minusg 15546  df-sbg 15547  df-mulg 15548  df-subg 15678  df-nsg 15679  df-eqg 15680  df-ghm 15745  df-cntz 15835  df-cmn 16279  df-abl 16280  df-mgp 16592  df-ur 16604  df-srg 16608  df-rng 16647  df-cring 16648  df-oppr 16715  df-dvdsr 16733  df-unit 16734  df-invr 16764  df-dvr 16775  df-rnghom 16806  df-drng 16834  df-field 16835  df-subrg 16863  df-lmod 16950  df-lss 17014  df-lsp 17053  df-sra 17253  df-rgmod 17254  df-lidl 17255  df-rsp 17256  df-2idl 17314  df-nzr 17340  df-rlreg 17354  df-domn 17355  df-idom 17356  df-assa 17384  df-asp 17385  df-ascl 17386  df-psr 17423  df-mvr 17424  df-mpl 17425  df-opsr 17427  df-evls 17588  df-evl 17589  df-psr1 17636  df-vr1 17637  df-ply1 17638  df-coe1 17639  df-evl1 17751  df-cnfld 17819  df-zring 17884  df-zrh 17935  df-zn 17938  df-mdeg 21524  df-deg1 21525  df-mon1 21602  df-uc1p 21603  df-q1p 21604  df-r1p 21605  df-lgs 22634
This theorem is referenced by:  2sqlem11  22714  2sqblem  22716
  Copyright terms: Public domain W3C validator