MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsqr Structured version   Unicode version

Theorem lgsqr 23747
Description: The Legendre symbol for odd primes is  1 iff the number is not a multiple of the prime (in which case it is  0, see lgsne0 23734) and the number is a quadratic residue  mod  P (it is  -u 1 for nonresidues by the process of elimination from lgsabs1 23735). Given our definition of the Legendre symbol, this theorem is equivalent to Euler's criterion. (Contributed by Mario Carneiro, 15-Jun-2015.)
Assertion
Ref Expression
lgsqr  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  <->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
Distinct variable groups:    x, A    x, P

Proof of Theorem lgsqr
StepHypRef Expression
1 eldifi 3622 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
21adantl 466 . . . . . . . . . 10  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  Prime )
3 prmz 14233 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  ZZ )
42, 3syl 16 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  P  e.  ZZ )
5 simpl 457 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  A  e.  ZZ )
6 gcdcom 14170 . . . . . . . . 9  |-  ( ( P  e.  ZZ  /\  A  e.  ZZ )  ->  ( P  gcd  A
)  =  ( A  gcd  P ) )
74, 5, 6syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  gcd  A )  =  ( A  gcd  P ) )
87eqeq1d 2459 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( P  gcd  A )  =  1  <->  ( A  gcd  P )  =  1 ) )
9 coprm 14253 . . . . . . . 8  |-  ( ( P  e.  Prime  /\  A  e.  ZZ )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
102, 5, 9syl2anc 661 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -.  P  ||  A  <->  ( P  gcd  A )  =  1 ) )
11 lgsne0 23734 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( A  /L P )  =/=  0  <->  ( A  gcd  P )  =  1 ) )
125, 4, 11syl2anc 661 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =/=  0  <->  ( A  gcd  P )  =  1 ) )
138, 10, 123bitr4d 285 . . . . . 6  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( -.  P  ||  A  <->  ( A  /L P )  =/=  0 ) )
1413necon4bbid 2710 . . . . 5  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  <->  ( A  /L P )  =  0 ) )
15 0ne1 10624 . . . . . 6  |-  0  =/=  1
16 neeq1 2738 . . . . . 6  |-  ( ( A  /L P )  =  0  -> 
( ( A  /L P )  =/=  1  <->  0  =/=  1
) )
1715, 16mpbiri 233 . . . . 5  |-  ( ( A  /L P )  =  0  -> 
( A  /L
P )  =/=  1
)
1814, 17syl6bi 228 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( P  ||  A  ->  ( A  /L P )  =/=  1 ) )
1918necon2bd 2672 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  -.  P  ||  A ) )
20 lgsqrlem5 23746 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  ( A  /L P )  =  1 )  ->  E. x  e.  ZZ  P  ||  (
( x ^ 2 )  -  A ) )
21203expia 1198 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  E. x  e.  ZZ  P  ||  (
( x ^ 2 )  -  A ) ) )
2219, 21jcad 533 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  ->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
23 simprl 756 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  e.  ZZ )
2423zred 10990 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  e.  RR )
25 absresq 13147 . . . . . . 7  |-  ( x  e.  RR  ->  (
( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
2624, 25syl 16 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
) ^ 2 )  =  ( x ^
2 ) )
2726oveq1d 6311 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  ( ( x ^ 2 )  /L P ) )
28 simplr 755 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  A )
291ad3antlr 730 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  Prime )
3029, 3syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  ZZ )
31 zsqcl 12241 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  (
x ^ 2 )  e.  ZZ )
3223, 31syl 16 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( x ^ 2 )  e.  ZZ )
33 simplll 759 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  A  e.  ZZ )
34 simprr 757 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  ||  ( ( x ^ 2 )  -  A ) )
35 dvdssub2 14035 . . . . . . . . . . 11  |-  ( ( ( P  e.  ZZ  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  /\  P  ||  ( ( x ^ 2 )  -  A ) )  ->  ( P  ||  ( x ^ 2 )  <->  P  ||  A ) )
3630, 32, 33, 34, 35syl31anc 1231 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  (
x ^ 2 )  <-> 
P  ||  A )
)
3728, 36mtbird 301 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  ( x ^ 2 ) )
38 2nn 10714 . . . . . . . . . . 11  |-  2  e.  NN
3938a1i 11 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
2  e.  NN )
40 prmdvdsexp 14267 . . . . . . . . . 10  |-  ( ( P  e.  Prime  /\  x  e.  ZZ  /\  2  e.  NN )  ->  ( P  ||  ( x ^
2 )  <->  P  ||  x
) )
4129, 23, 39, 40syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  (
x ^ 2 )  <-> 
P  ||  x )
)
4237, 41mtbid 300 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  x )
43 dvds0 14011 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  P  ||  0 )
4430, 43syl 16 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  ||  0 )
45 breq2 4460 . . . . . . . . . 10  |-  ( x  =  0  ->  ( P  ||  x  <->  P  ||  0
) )
4644, 45syl5ibrcom 222 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( x  =  0  ->  P  ||  x
) )
4746necon3bd 2669 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  P  ||  x  ->  x  =/=  0
) )
4842, 47mpd 15 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  x  =/=  0 )
49 nnabscl 13170 . . . . . . 7  |-  ( ( x  e.  ZZ  /\  x  =/=  0 )  -> 
( abs `  x
)  e.  NN )
5023, 48, 49syl2anc 661 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( abs `  x
)  e.  NN )
5150nnzd 10989 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( abs `  x
)  e.  ZZ )
52 gcdcom 14170 . . . . . . . 8  |-  ( ( ( abs `  x
)  e.  ZZ  /\  P  e.  ZZ )  ->  ( ( abs `  x
)  gcd  P )  =  ( P  gcd  ( abs `  x ) ) )
5351, 30, 52syl2anc 661 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
)  gcd  P )  =  ( P  gcd  ( abs `  x ) ) )
54 dvdsabsb 14015 . . . . . . . . . 10  |-  ( ( P  e.  ZZ  /\  x  e.  ZZ )  ->  ( P  ||  x  <->  P 
||  ( abs `  x
) ) )
5530, 23, 54syl2anc 661 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  ||  x  <->  P 
||  ( abs `  x
) ) )
5642, 55mtbid 300 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  P  ||  ( abs `  x ) )
57 coprm 14253 . . . . . . . . 9  |-  ( ( P  e.  Prime  /\  ( abs `  x )  e.  ZZ )  ->  ( -.  P  ||  ( abs `  x )  <->  ( P  gcd  ( abs `  x
) )  =  1 ) )
5829, 51, 57syl2anc 661 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  P  ||  ( abs `  x )  <-> 
( P  gcd  ( abs `  x ) )  =  1 ) )
5956, 58mpbid 210 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( P  gcd  ( abs `  x ) )  =  1 )
6053, 59eqtrd 2498 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( abs `  x
)  gcd  P )  =  1 )
61 lgssq 23736 . . . . . 6  |-  ( ( ( abs `  x
)  e.  NN  /\  P  e.  ZZ  /\  (
( abs `  x
)  gcd  P )  =  1 )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  1 )
6250, 30, 60, 61syl3anc 1228 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( abs `  x ) ^ 2 )  /L P )  =  1 )
63 prmnn 14232 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
6429, 63syl 16 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  e.  NN )
65 moddvds 14005 . . . . . . . . 9  |-  ( ( P  e.  NN  /\  ( x ^ 2 )  e.  ZZ  /\  A  e.  ZZ )  ->  ( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  <-> 
P  ||  ( (
x ^ 2 )  -  A ) ) )
6664, 32, 33, 65syl3anc 1228 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  =  ( A  mod  P )  <-> 
P  ||  ( (
x ^ 2 )  -  A ) ) )
6734, 66mpbird 232 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( x ^
2 )  mod  P
)  =  ( A  mod  P ) )
6867oveq1d 6311 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( A  mod  P
)  /L P ) )
69 eldifsni 4158 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
7069ad3antlr 730 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  P  =/=  2 )
7170necomd 2728 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
2  =/=  P )
72 2z 10917 . . . . . . . . . 10  |-  2  e.  ZZ
73 uzid 11120 . . . . . . . . . 10  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
7472, 73ax-mp 5 . . . . . . . . 9  |-  2  e.  ( ZZ>= `  2 )
75 dvdsprm 14252 . . . . . . . . . 10  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
2  ||  P  <->  2  =  P ) )
7675necon3bbid 2704 . . . . . . . . 9  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  ( -.  2  ||  P  <->  2  =/=  P ) )
7774, 29, 76sylancr 663 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( -.  2  ||  P 
<->  2  =/=  P ) )
7871, 77mpbird 232 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  ->  -.  2  ||  P )
79 lgsmod 23722 . . . . . . 7  |-  ( ( ( x ^ 2 )  e.  ZZ  /\  P  e.  NN  /\  -.  2  ||  P )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( x ^ 2 )  /L P ) )
8032, 64, 78, 79syl3anc 1228 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( ( x ^ 2 )  mod 
P )  /L
P )  =  ( ( x ^ 2 )  /L P ) )
81 lgsmod 23722 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  P  e.  NN  /\  -.  2  ||  P )  -> 
( ( A  mod  P )  /L P )  =  ( A  /L P ) )
8233, 64, 78, 81syl3anc 1228 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( A  mod  P )  /L P )  =  ( A  /L P ) )
8368, 80, 823eqtr3d 2506 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( ( x ^
2 )  /L
P )  =  ( A  /L P ) )
8427, 62, 833eqtr3rd 2507 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  /\  ( x  e.  ZZ  /\  P  ||  ( ( x ^
2 )  -  A
) ) )  -> 
( A  /L
P )  =  1 )
8584rexlimdvaa 2950 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  ( E. x  e.  ZZ  P  ||  ( ( x ^ 2 )  -  A )  ->  ( A  /L P )  =  1 ) )
8685expimpd 603 . 2  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) )  ->  ( A  /L P )  =  1 ) )
8722, 86impbid 191 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( ( A  /L P )  =  1  <->  ( -.  P  ||  A  /\  E. x  e.  ZZ  P  ||  ( ( x ^
2 )  -  A
) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808    \ cdif 3468   {csn 4032   class class class wbr 4456   ` cfv 5594  (class class class)co 6296   RRcr 9508   0cc0 9509   1c1 9510    - cmin 9824   NNcn 10556   2c2 10606   ZZcz 10885   ZZ>=cuz 11106    mod cmo 11999   ^cexp 12169   abscabs 13079    || cdvds 13998    gcd cgcd 14156   Primecprime 14229    /Lclgs 23695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-se 4848  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-ofr 6540  df-om 6700  df-1st 6799  df-2nd 6800  df-supp 6918  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-2o 7149  df-oadd 7152  df-er 7329  df-ec 7331  df-qs 7335  df-map 7440  df-pm 7441  df-ixp 7489  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-fsupp 7848  df-sup 7919  df-oi 7953  df-card 8337  df-cda 8565  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-fz 11698  df-fzo 11822  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-hash 12409  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-dvds 13999  df-gcd 14157  df-prm 14230  df-phi 14308  df-pc 14373  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-sca 14728  df-vsca 14729  df-ip 14730  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-hom 14736  df-cco 14737  df-0g 14859  df-gsum 14860  df-prds 14865  df-pws 14867  df-imas 14925  df-qus 14926  df-mre 15003  df-mrc 15004  df-acs 15006  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-submnd 16094  df-grp 16184  df-minusg 16185  df-sbg 16186  df-mulg 16187  df-subg 16325  df-nsg 16326  df-eqg 16327  df-ghm 16392  df-cntz 16482  df-cmn 16927  df-abl 16928  df-mgp 17269  df-ur 17281  df-srg 17285  df-ring 17327  df-cring 17328  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-invr 17448  df-dvr 17459  df-rnghom 17491  df-drng 17525  df-field 17526  df-subrg 17554  df-lmod 17641  df-lss 17706  df-lsp 17745  df-sra 17945  df-rgmod 17946  df-lidl 17947  df-rsp 17948  df-2idl 18007  df-nzr 18033  df-rlreg 18058  df-domn 18059  df-idom 18060  df-assa 18088  df-asp 18089  df-ascl 18090  df-psr 18132  df-mvr 18133  df-mpl 18134  df-opsr 18136  df-evls 18298  df-evl 18299  df-psr1 18346  df-vr1 18347  df-ply1 18348  df-coe1 18349  df-evl1 18480  df-cnfld 18548  df-zring 18616  df-zrh 18668  df-zn 18671  df-mdeg 22579  df-deg1 22580  df-mon1 22657  df-uc1p 22658  df-q1p 22659  df-r1p 22660  df-lgs 23696
This theorem is referenced by:  2sqlem11  23776  2sqblem  23778
  Copyright terms: Public domain W3C validator