MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem4 Structured version   Visualization version   Unicode version

Theorem lgslem4 24227
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 } although this representation is less useful to us). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgslem4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Distinct variable group:    x, A
Allowed substitution hints:    P( x)    Z( x)

Proof of Theorem lgslem4
StepHypRef Expression
1 simpll 760 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  A  e.  ZZ )
2 oddprm 14765 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
32ad2antlr 733 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN )
43nnnn0d 10925 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN0 )
5 zexpcl 12287 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
61, 4, 5syl2anc 667 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
76zred 11040 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )
8 0red 9644 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  0  e.  RR )
9 1red 9658 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  e.  RR )
10 eldifi 3555 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
1110ad2antlr 733 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  Prime )
12 prmuz2 14642 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
1311, 12syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
14 eluz2b2 11231 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
1513, 14sylib 200 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( P  e.  NN  /\  1  <  P ) )
1615simpld 461 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  NN )
1716nnrpd 11339 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  RR+ )
18 0zd 10949 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  0  e.  ZZ )
19 simpr 463 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  ||  A )
20 dvdsval3 14309 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
2116, 1, 20syl2anc 667 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
2219, 21mpbid 214 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A  mod  P )  =  0 )
23 0mod 12128 . . . . . . . . . . 11  |-  ( P  e.  RR+  ->  ( 0  mod  P )  =  0 )
2417, 23syl 17 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
0  mod  P )  =  0 )
2522, 24eqtr4d 2488 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A  mod  P )  =  ( 0  mod  P
) )
26 modexp 12407 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  0  e.  ZZ )  /\  ( ( ( P  -  1 )  /  2 )  e. 
NN0  /\  P  e.  RR+ )  /\  ( A  mod  P )  =  ( 0  mod  P
) )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 0 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
271, 18, 4, 17, 25, 26syl221anc 1279 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 0 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
2830expd 12432 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
0 ^ ( ( P  -  1 )  /  2 ) )  =  0 )
2928oveq1d 6305 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( 0 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )
3027, 29eqtrd 2485 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )
31 modadd1 12134 . . . . . . 7  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  e.  RR  /\  0  e.  RR )  /\  ( 1  e.  RR  /\  P  e.  RR+ )  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( ( 0  +  1 )  mod  P ) )
327, 8, 9, 17, 30, 31syl221anc 1279 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  ( ( 0  +  1 )  mod 
P ) )
33 0p1e1 10721 . . . . . . 7  |-  ( 0  +  1 )  =  1
3433oveq1i 6300 . . . . . 6  |-  ( ( 0  +  1 )  mod  P )  =  ( 1  mod  P
)
3532, 34syl6eq 2501 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  ( 1  mod 
P ) )
3616nnred 10624 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  RR )
3715simprd 465 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  <  P )
38 1mod 12129 . . . . . 6  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
3936, 37, 38syl2anc 667 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
1  mod  P )  =  1 )
4035, 39eqtrd 2485 . . . 4  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  1 )
4140oveq1d 6305 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 1  -  1 ) )
42 1m1e0 10678 . . . 4  |-  ( 1  -  1 )  =  0
43 lgslem2.z . . . . . 6  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
4443lgslem2 24225 . . . . 5  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
4544simp2i 1018 . . . 4  |-  0  e.  Z
4642, 45eqeltri 2525 . . 3  |-  ( 1  -  1 )  e.  Z
4741, 46syl6eqel 2537 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
48 lgslem1 24224 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
49 elpri 3985 . . . 4  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
50 oveq1 6297 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 0  -  1 ) )
51 df-neg 9863 . . . . . . 7  |-  -u 1  =  ( 0  -  1 )
5244simp1i 1017 . . . . . . 7  |-  -u 1  e.  Z
5351, 52eqeltrri 2526 . . . . . 6  |-  ( 0  -  1 )  e.  Z
5450, 53syl6eqel 2537 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
55 oveq1 6297 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 2  -  1 ) )
56 2m1e1 10724 . . . . . . 7  |-  ( 2  -  1 )  =  1
5744simp3i 1019 . . . . . . 7  |-  1  e.  Z
5856, 57eqeltri 2525 . . . . . 6  |-  ( 2  -  1 )  e.  Z
5955, 58syl6eqel 2537 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
6054, 59jaoi 381 . . . 4  |-  ( ( ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 )  ->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 )  e.  Z
)
6148, 49, 603syl 18 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
62613expa 1208 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
6347, 62pm2.61dan 800 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 985    = wceq 1444    e. wcel 1887   {crab 2741    \ cdif 3401   {csn 3968   {cpr 3970   class class class wbr 4402   ` cfv 5582  (class class class)co 6290   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    < clt 9675    <_ cle 9676    - cmin 9860   -ucneg 9861    / cdiv 10269   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302    mod cmo 12096   ^cexp 12272   abscabs 13297    || cdvds 14305   Primecprime 14622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-om 6693  df-1st 6793  df-2nd 6794  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-map 7474  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-sup 7956  df-inf 7957  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-n0 10870  df-z 10938  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-fl 12028  df-mod 12097  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-dvds 14306  df-gcd 14469  df-prm 14623  df-phi 14714
This theorem is referenced by:  lgsfcl2  24230
  Copyright terms: Public domain W3C validator