MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgslem4 Structured version   Unicode version

Theorem lgslem4 23440
Description: The function  F is closed in integers with absolute value less than  1 (namely  { -u
1 ,  0 ,  1 } although this representation is less useful to us). (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypothesis
Ref Expression
lgslem2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgslem4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Distinct variable group:    x, A
Allowed substitution hints:    P( x)    Z( x)

Proof of Theorem lgslem4
StepHypRef Expression
1 simpll 753 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  A  e.  ZZ )
2 oddprm 14215 . . . . . . . . . . 11  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
32ad2antlr 726 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN )
43nnnn0d 10864 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( P  -  1 )  /  2 )  e.  NN0 )
5 zexpcl 12161 . . . . . . . . 9  |-  ( ( A  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( A ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
61, 4, 5syl2anc 661 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  ZZ )
76zred 10978 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A ^ ( ( P  -  1 )  / 
2 ) )  e.  RR )
8 0red 9609 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  0  e.  RR )
9 1red 9623 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  e.  RR )
10 eldifi 3631 . . . . . . . . . . . 12  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  e.  Prime )
1110ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  Prime )
12 prmuz2 14111 . . . . . . . . . . 11  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
1311, 12syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  ( ZZ>= `  2 )
)
14 eluz2b2 11166 . . . . . . . . . 10  |-  ( P  e.  ( ZZ>= `  2
)  <->  ( P  e.  NN  /\  1  < 
P ) )
1513, 14sylib 196 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( P  e.  NN  /\  1  <  P ) )
1615simpld 459 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  NN )
1716nnrpd 11267 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  RR+ )
18 0zd 10888 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  0  e.  ZZ )
19 simpr 461 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  ||  A )
20 dvdsval3 13868 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  A  e.  ZZ )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
2116, 1, 20syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( P  ||  A  <->  ( A  mod  P )  =  0 ) )
2219, 21mpbid 210 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A  mod  P )  =  0 )
23 0mod 12007 . . . . . . . . . . 11  |-  ( P  e.  RR+  ->  ( 0  mod  P )  =  0 )
2417, 23syl 16 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
0  mod  P )  =  0 )
2522, 24eqtr4d 2511 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  ( A  mod  P )  =  ( 0  mod  P
) )
26 modexp 12281 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  0  e.  ZZ )  /\  ( ( ( P  -  1 )  /  2 )  e. 
NN0  /\  P  e.  RR+ )  /\  ( A  mod  P )  =  ( 0  mod  P
) )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 0 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
271, 18, 4, 17, 25, 26syl221anc 1239 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( ( 0 ^ ( ( P  -  1 )  / 
2 ) )  mod 
P ) )
2830expd 12306 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
0 ^ ( ( P  -  1 )  /  2 ) )  =  0 )
2928oveq1d 6310 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( 0 ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )
3027, 29eqtrd 2508 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )
31 modadd1 12013 . . . . . . 7  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  e.  RR  /\  0  e.  RR )  /\  ( 1  e.  RR  /\  P  e.  RR+ )  /\  (
( A ^ (
( P  -  1 )  /  2 ) )  mod  P )  =  ( 0  mod 
P ) )  -> 
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  ( ( 0  +  1 )  mod  P ) )
327, 8, 9, 17, 30, 31syl221anc 1239 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  ( ( 0  +  1 )  mod 
P ) )
33 0p1e1 10659 . . . . . . 7  |-  ( 0  +  1 )  =  1
3433oveq1i 6305 . . . . . 6  |-  ( ( 0  +  1 )  mod  P )  =  ( 1  mod  P
)
3532, 34syl6eq 2524 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  ( 1  mod 
P ) )
3616nnred 10563 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  P  e.  RR )
3715simprd 463 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  1  <  P )
38 1mod 12008 . . . . . 6  |-  ( ( P  e.  RR  /\  1  <  P )  -> 
( 1  mod  P
)  =  1 )
3936, 37, 38syl2anc 661 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
1  mod  P )  =  1 )
4035, 39eqtrd 2508 . . . 4  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  1 )
4140oveq1d 6310 . . 3  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 1  -  1 ) )
42 1m1e0 10616 . . . 4  |-  ( 1  -  1 )  =  0
43 lgslem2.z . . . . . 6  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
4443lgslem2 23438 . . . . 5  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
4544simp2i 1006 . . . 4  |-  0  e.  Z
4642, 45eqeltri 2551 . . 3  |-  ( 1  -  1 )  e.  Z
4741, 46syl6eqel 2563 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
48 lgslem1 23437 . . . 4  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 } )
49 elpri 4053 . . . 4  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  e.  { 0 ,  2 }  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 ) )
50 oveq1 6302 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 0  -  1 ) )
51 df-neg 9820 . . . . . . 7  |-  -u 1  =  ( 0  -  1 )
5244simp1i 1005 . . . . . . 7  |-  -u 1  e.  Z
5351, 52eqeltrri 2552 . . . . . 6  |-  ( 0  -  1 )  e.  Z
5450, 53syl6eqel 2563 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  0  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
55 oveq1 6302 . . . . . 6  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  =  ( 2  -  1 ) )
56 2m1e1 10662 . . . . . . 7  |-  ( 2  -  1 )  =  1
5744simp3i 1007 . . . . . . 7  |-  1  e.  Z
5856, 57eqeltri 2551 . . . . . 6  |-  ( 2  -  1 )  e.  Z
5955, 58syl6eqel 2563 . . . . 5  |-  ( ( ( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  =  2  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
6054, 59jaoi 379 . . . 4  |-  ( ( ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  0  \/  ( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  =  2 )  ->  ( ( ( ( A ^ (
( P  -  1 )  /  2 ) )  +  1 )  mod  P )  - 
1 )  e.  Z
)
6148, 49, 603syl 20 . . 3  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
62613expa 1196 . 2  |-  ( ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  /\  -.  P  ||  A )  ->  (
( ( ( A ^ ( ( P  -  1 )  / 
2 ) )  +  1 )  mod  P
)  -  1 )  e.  Z )
6347, 62pm2.61dan 789 1  |-  ( ( A  e.  ZZ  /\  P  e.  ( Prime  \  { 2 } ) )  ->  ( (
( ( A ^
( ( P  - 
1 )  /  2
) )  +  1 )  mod  P )  -  1 )  e.  Z )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   {crab 2821    \ cdif 3478   {csn 4033   {cpr 4035   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    < clt 9640    <_ cle 9641    - cmin 9817   -ucneg 9818    / cdiv 10218   NNcn 10548   2c2 10597   NN0cn0 10807   ZZcz 10876   ZZ>=cuz 11094   RR+crp 11232    mod cmo 11976   ^cexp 12146   abscabs 13047    || cdivides 13864   Primecprime 14093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-dvds 13865  df-gcd 14021  df-prm 14094  df-phi 14172
This theorem is referenced by:  lgsfcl2  23443
  Copyright terms: Public domain W3C validator