MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem4 Structured version   Unicode version

Theorem lgseisenlem4 23355
Description: Lemma for lgseisen 23356. The function  M is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgseisen.4  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
lgseisen.5  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
lgseisen.6  |-  S  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
lgseisen.7  |-  Y  =  (ℤ/n `  P )
lgseisen.8  |-  G  =  (mulGrp `  Y )
lgseisen.9  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
lgseisenlem4  |-  ( ph  ->  ( ( Q ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  mod  P ) )
Distinct variable groups:    x, G    x, L    x, y, P    ph, x, y    y, M   
x, Q, y    x, Y    x, S
Allowed substitution hints:    R( x, y)    S( y)    G( y)    L( y)    M( x)    Y( y)

Proof of Theorem lgseisenlem4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 zringbas 18262 . . . . 5  |-  ZZ  =  ( Base ` ring )
2 zring0 18266 . . . . 5  |-  0  =  ( 0g ` ring )
3 zringabl 18260 . . . . . 6  |-ring  e.  Abel
4 ablcmn 16600 . . . . . 6  |-  (ring  e.  Abel  ->ring  e. CMnd )
53, 4mp1i 12 . . . . 5  |-  ( ph  ->ring  e. CMnd
)
6 lgseisen.1 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
76eldifad 3488 . . . . . . . . 9  |-  ( ph  ->  P  e.  Prime )
8 lgseisen.7 . . . . . . . . . 10  |-  Y  =  (ℤ/n `  P )
98znfld 18366 . . . . . . . . 9  |-  ( P  e.  Prime  ->  Y  e. Field
)
107, 9syl 16 . . . . . . . 8  |-  ( ph  ->  Y  e. Field )
11 isfld 17188 . . . . . . . . 9  |-  ( Y  e. Field 
<->  ( Y  e.  DivRing  /\  Y  e.  CRing ) )
1211simprbi 464 . . . . . . . 8  |-  ( Y  e. Field  ->  Y  e.  CRing )
1310, 12syl 16 . . . . . . 7  |-  ( ph  ->  Y  e.  CRing )
14 lgseisen.8 . . . . . . . 8  |-  G  =  (mulGrp `  Y )
1514crngmgp 16994 . . . . . . 7  |-  ( Y  e.  CRing  ->  G  e. CMnd )
1613, 15syl 16 . . . . . 6  |-  ( ph  ->  G  e. CMnd )
17 cmnmnd 16609 . . . . . 6  |-  ( G  e. CMnd  ->  G  e.  Mnd )
1816, 17syl 16 . . . . 5  |-  ( ph  ->  G  e.  Mnd )
19 fzfid 12047 . . . . 5  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin )
20 m1expcl 12153 . . . . . . . 8  |-  ( k  e.  ZZ  ->  ( -u 1 ^ k )  e.  ZZ )
2120adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( -u
1 ^ k )  e.  ZZ )
22 eqidd 2468 . . . . . . 7  |-  ( ph  ->  ( k  e.  ZZ  |->  ( -u 1 ^ k
) )  =  ( k  e.  ZZ  |->  (
-u 1 ^ k
) ) )
23 crngrng 16996 . . . . . . . . . . 11  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
2413, 23syl 16 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  Ring )
25 lgseisen.9 . . . . . . . . . . 11  |-  L  =  ( ZRHom `  Y
)
2625zrhrhm 18316 . . . . . . . . . 10  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
2724, 26syl 16 . . . . . . . . 9  |-  ( ph  ->  L  e.  (ring RingHom  Y ) )
28 eqid 2467 . . . . . . . . . 10  |-  ( Base `  Y )  =  (
Base `  Y )
291, 28rhmf 17159 . . . . . . . . 9  |-  ( L  e.  (ring RingHom  Y )  ->  L : ZZ --> ( Base `  Y
) )
3027, 29syl 16 . . . . . . . 8  |-  ( ph  ->  L : ZZ --> ( Base `  Y ) )
3130feqmptd 5918 . . . . . . 7  |-  ( ph  ->  L  =  ( x  e.  ZZ  |->  ( L `
 x ) ) )
32 fveq2 5864 . . . . . . 7  |-  ( x  =  ( -u 1 ^ k )  -> 
( L `  x
)  =  ( L `
 ( -u 1 ^ k ) ) )
3321, 22, 31, 32fmptco 6052 . . . . . 6  |-  ( ph  ->  ( L  o.  (
k  e.  ZZ  |->  (
-u 1 ^ k
) ) )  =  ( k  e.  ZZ  |->  ( L `  ( -u
1 ^ k ) ) ) )
34 zringmpg 18289 . . . . . . . . 9  |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
3534, 14rhmmhm 17155 . . . . . . . 8  |-  ( L  e.  (ring RingHom  Y )  ->  L  e.  ( ( (mulGrp ` fld )s  ZZ ) MndHom  G ) )
3627, 35syl 16 . . . . . . 7  |-  ( ph  ->  L  e.  ( ( (mulGrp ` fld )s  ZZ ) MndHom  G ) )
37 neg1cn 10635 . . . . . . . . . . 11  |-  -u 1  e.  CC
38 neg1ne0 10637 . . . . . . . . . . 11  |-  -u 1  =/=  0
39 eqid 2467 . . . . . . . . . . . 12  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
40 eqid 2467 . . . . . . . . . . . 12  |-  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
4139, 40expghm 18296 . . . . . . . . . . 11  |-  ( (
-u 1  e.  CC  /\  -u 1  =/=  0
)  ->  ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) )
4237, 38, 41mp2an 672 . . . . . . . . . 10  |-  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  e.  (ring  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )
43 ghmmhm 16072 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  |->  (
-u 1 ^ k
) )  e.  (ring  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )  ->  (
k  e.  ZZ  |->  (
-u 1 ^ k
) )  e.  (ring MndHom  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) )
4442, 43ax-mp 5 . . . . . . . . 9  |-  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  e.  (ring MndHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )
45 cnrng 18211 . . . . . . . . . 10  |-fld  e.  Ring
46 cnfldbas 18195 . . . . . . . . . . . 12  |-  CC  =  ( Base ` fld )
47 cnfld0 18213 . . . . . . . . . . . 12  |-  0  =  ( 0g ` fld )
48 cndrng 18218 . . . . . . . . . . . 12  |-fld  e.  DivRing
4946, 47, 48drngui 17185 . . . . . . . . . . 11  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
5049, 39unitsubm 17103 . . . . . . . . . 10  |-  (fld  e.  Ring  -> 
( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
5145, 50ax-mp 5 . . . . . . . . 9  |-  ( CC 
\  { 0 } )  e.  (SubMnd `  (mulGrp ` fld ) )
5240resmhm2 15801 . . . . . . . . 9  |-  ( ( ( k  e.  ZZ  |->  ( -u 1 ^ k
) )  e.  (ring MndHom  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) )  /\  ( CC  \  { 0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )  -> 
( k  e.  ZZ  |->  ( -u 1 ^ k
) )  e.  (ring MndHom  (mulGrp ` fld ) ) )
5344, 51, 52mp2an 672 . . . . . . . 8  |-  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  e.  (ring MndHom  (mulGrp ` fld ) )
54 zsubrg 18239 . . . . . . . . . 10  |-  ZZ  e.  (SubRing ` fld )
5539subrgsubm 17225 . . . . . . . . . 10  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  e.  (SubMnd `  (mulGrp ` fld ) ) )
5654, 55ax-mp 5 . . . . . . . . 9  |-  ZZ  e.  (SubMnd `  (mulGrp ` fld ) )
57 eqid 2467 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  =  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )
5821, 57fmptd 6043 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  ZZ  |->  ( -u 1 ^ k
) ) : ZZ --> ZZ )
59 frn 5735 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  |->  (
-u 1 ^ k
) ) : ZZ --> ZZ  ->  ran  ( k  e.  ZZ  |->  ( -u 1 ^ k ) ) 
C_  ZZ )
6058, 59syl 16 . . . . . . . . 9  |-  ( ph  ->  ran  ( k  e.  ZZ  |->  ( -u 1 ^ k ) ) 
C_  ZZ )
61 eqid 2467 . . . . . . . . . 10  |-  ( (mulGrp ` fld )s  ZZ )  =  (
(mulGrp ` fld )s  ZZ )
6261resmhm2b 15802 . . . . . . . . 9  |-  ( ( ZZ  e.  (SubMnd `  (mulGrp ` fld ) )  /\  ran  ( k  e.  ZZ  |->  ( -u 1 ^ k
) )  C_  ZZ )  ->  ( ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  e.  (ring MndHom  (mulGrp ` fld ) )  <->  ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring MndHom  ( (mulGrp ` fld )s  ZZ ) ) ) )
6356, 60, 62sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring MndHom  (mulGrp ` fld ) )  <->  ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring MndHom  ( (mulGrp ` fld )s  ZZ ) ) ) )
6453, 63mpbii 211 . . . . . . 7  |-  ( ph  ->  ( k  e.  ZZ  |->  ( -u 1 ^ k
) )  e.  (ring MndHom  (
(mulGrp ` fld )s  ZZ ) ) )
65 mhmco 15803 . . . . . . 7  |-  ( ( L  e.  ( ( (mulGrp ` fld )s  ZZ ) MndHom  G )  /\  ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring MndHom  ( (mulGrp ` fld )s  ZZ ) ) )  ->  ( L  o.  ( k  e.  ZZ  |->  ( -u 1 ^ k
) ) )  e.  (ring MndHom  G ) )
6636, 64, 65syl2anc 661 . . . . . 6  |-  ( ph  ->  ( L  o.  (
k  e.  ZZ  |->  (
-u 1 ^ k
) ) )  e.  (ring MndHom  G ) )
6733, 66eqeltrrd 2556 . . . . 5  |-  ( ph  ->  ( k  e.  ZZ  |->  ( L `  ( -u
1 ^ k ) ) )  e.  (ring MndHom  G
) )
68 lgseisen.2 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
6968eldifad 3488 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  Prime )
70 prmnn 14075 . . . . . . . . . . 11  |-  ( Q  e.  Prime  ->  Q  e.  NN )
7169, 70syl 16 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  NN )
7271nnred 10547 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
73 prmnn 14075 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
747, 73syl 16 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
7572, 74nndivred 10580 . . . . . . . 8  |-  ( ph  ->  ( Q  /  P
)  e.  RR )
7675adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  /  P )  e.  RR )
77 2nn 10689 . . . . . . . . 9  |-  2  e.  NN
78 elfznn 11710 . . . . . . . . . 10  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  NN )
7978adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  NN )
80 nnmulcl 10555 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  x  e.  NN )  ->  ( 2  x.  x
)  e.  NN )
8177, 79, 80sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  NN )
8281nnred 10547 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  RR )
8376, 82remulcld 9620 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  /  P
)  x.  ( 2  x.  x ) )  e.  RR )
8483flcld 11899 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ )
85 eqid 2467 . . . . . 6  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )
86 fvex 5874 . . . . . . 7  |-  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e. 
_V
8786a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e. 
_V )
88 c0ex 9586 . . . . . . 7  |-  0  e.  _V
8988a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  _V )
9085, 19, 87, 89fsuppmptdm 7836 . . . . 5  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) finSupp  0 )
91 oveq2 6290 . . . . . 6  |-  ( k  =  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) )  ->  ( -u 1 ^ k )  =  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
9291fveq2d 5868 . . . . 5  |-  ( k  =  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) )  ->  ( L `  ( -u 1 ^ k ) )  =  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
93 oveq2 6290 . . . . . 6  |-  ( k  =  (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  ->  ( -u 1 ^ k )  =  ( -u 1 ^ (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) ) ) )
9493fveq2d 5868 . . . . 5  |-  ( k  =  (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  ->  ( L `  ( -u 1 ^ k ) )  =  ( L `  ( -u 1 ^ (ring  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) ) ) )
951, 2, 5, 18, 19, 67, 84, 90, 92, 94gsummhm2 16752 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )  =  ( L `  ( -u 1 ^ (ring  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) ) ) )
9614, 28mgpbas 16937 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  G )
97 eqid 2467 . . . . . . . 8  |-  ( .r
`  Y )  =  ( .r `  Y
)
9814, 97mgpplusg 16935 . . . . . . 7  |-  ( .r
`  Y )  =  ( +g  `  G
)
9930adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  L : ZZ --> ( Base `  Y
) )
100 m1expcl 12153 . . . . . . . . 9  |-  ( ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) )  e.  ZZ  ->  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  ZZ )
10184, 100syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  ZZ )
10299, 101ffvelrnd 6020 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  e.  ( Base `  Y
) )
103 neg1z 10895 . . . . . . . . . 10  |-  -u 1  e.  ZZ
104 lgseisen.4 . . . . . . . . . . 11  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
10569adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  Prime )
106 prmz 14076 . . . . . . . . . . . . . 14  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
107105, 106syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  ZZ )
10881nnzd 10961 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ZZ )
109107, 108zmulcld 10968 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  ZZ )
1107adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  Prime )
111110, 73syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN )
112109, 111zmodcld 11980 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  e.  NN0 )
113104, 112syl5eqel 2559 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  NN0 )
114 zexpcl 12145 . . . . . . . . . 10  |-  ( (
-u 1  e.  ZZ  /\  R  e.  NN0 )  ->  ( -u 1 ^ R )  e.  ZZ )
115103, 113, 114sylancr 663 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  ZZ )
116115, 107zmulcld 10968 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  Q )  e.  ZZ )
11799, 116ffvelrnd 6020 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ R )  x.  Q ) )  e.  ( Base `  Y
) )
118 eqid 2467 . . . . . . 7  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) )
119 eqid 2467 . . . . . . 7  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )
12096, 98, 16, 19, 102, 117, 118, 119gsummptfidmadd2 16734 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) ) )  =  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) ) ) )
121 eqidd 2468 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )
122 eqidd 2468 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ) )
12319, 102, 117, 121, 122offval2 6538 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ( .r `  Y
) ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) ) )
12427adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  L  e.  (ring RingHom  Y ) )
125 zringmulr 18265 . . . . . . . . . . . 12  |-  x.  =  ( .r ` ring )
1261, 125, 97rhmmul 17160 . . . . . . . . . . 11  |-  ( ( L  e.  (ring RingHom  Y )  /\  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  ZZ  /\  (
( -u 1 ^ R
)  x.  Q )  e.  ZZ )  -> 
( L `  (
( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ( .r `  Y ) ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) )
127124, 101, 116, 126syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ( .r `  Y ) ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) )
128109zred 10962 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  RR )
129111nnrpd 11251 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  RR+ )
130 modval 11962 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Q  x.  (
2  x.  x ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( Q  x.  ( 2  x.  x
) )  mod  P
)  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x ) )  /  P ) ) ) ) )
131128, 129, 130syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x ) )  /  P ) ) ) ) )
132104, 131syl5eq 2520 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x ) )  /  P ) ) ) ) )
133107zcnd 10963 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  CC )
13481nncnd 10548 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  CC )
135111nncnd 10548 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  CC )
136111nnne0d 10576 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  =/=  0 )
137133, 134, 135, 136div23d 10353 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  /  P )  =  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )
138137fveq2d 5868 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  x.  ( 2  x.  x ) )  /  P ) )  =  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )
139138oveq2d 6298 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x
) )  /  P
) ) )  =  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) )
140139oveq2d 6298 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x
) )  /  P
) ) ) )  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
141132, 140eqtrd 2508 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
142141oveq2d 6298 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R )  =  ( ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  +  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) ) ) )
143 prmz 14076 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  e.  Prime  ->  P  e.  ZZ )
144110, 143syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  ZZ )
145144, 84zmulcld 10968 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  e.  ZZ )
146145zcnd 10963 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  e.  CC )
147109zcnd 10963 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  CC )
148146, 147pncan3d 9929 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  =  ( Q  x.  ( 2  x.  x ) ) )
149 2cnd 10604 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  CC )
15079nncnd 10548 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  CC )
151133, 149, 150mul12d 9784 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  =  ( 2  x.  ( Q  x.  x
) ) )
152142, 148, 1513eqtrd 2512 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R )  =  ( 2  x.  ( Q  x.  x )
) )
153152oveq2d 6298 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( ( P  x.  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R ) )  =  ( -u 1 ^ ( 2  x.  ( Q  x.  x
) ) ) )
15437a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u 1  e.  CC )
15538a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u 1  =/=  0 )
156113nn0zd 10960 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ZZ )
157 expaddz 12174 . . . . . . . . . . . . . . . 16  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  ZZ  /\  R  e.  ZZ ) )  -> 
( -u 1 ^ (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R ) )  =  ( ( -u
1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  x.  ( -u 1 ^ R ) ) )
158154, 155, 145, 156, 157syl22anc 1229 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( ( P  x.  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R ) )  =  ( ( -u
1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  x.  ( -u 1 ^ R ) ) )
159 expmulz 12176 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  ( P  e.  ZZ  /\  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ ) )  -> 
( -u 1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( ( -u
1 ^ P ) ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
160154, 155, 144, 84, 159syl22anc 1229 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( ( -u
1 ^ P ) ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
161 1cnd 9608 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  1  e.  CC )
162 eldifsni 4153 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
1636, 162syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  P  =/=  2 )
164163necomd 2738 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  2  =/=  P )
165164neneqd 2669 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  -.  2  =  P )
166165adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  2  =  P )
167 2z 10892 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  ZZ
168 uzid 11092 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
169167, 168ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  ( ZZ>= `  2 )
170 dvdsprm 14095 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
2  ||  P  <->  2  =  P ) )
171169, 110, 170sylancr 663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  ||  P  <->  2  =  P ) )
172166, 171mtbird 301 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  2  ||  P )
173 oexpneg 13904 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  CC  /\  P  e.  NN  /\  -.  2  ||  P )  -> 
( -u 1 ^ P
)  =  -u (
1 ^ P ) )
174161, 111, 172, 173syl3anc 1228 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ P )  =  -u ( 1 ^ P ) )
175 1exp 12159 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  ZZ  ->  (
1 ^ P )  =  1 )
176144, 175syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1 ^ P )  =  1 )
177176negeqd 9810 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u (
1 ^ P )  =  -u 1 )
178174, 177eqtrd 2508 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ P )  =  -u 1 )
179178oveq1d 6297 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ P
) ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  =  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
180160, 179eqtrd 2508 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
181180oveq1d 6297 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  x.  ( -u 1 ^ R ) )  =  ( ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  x.  ( -u 1 ^ R ) ) )
182158, 181eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( ( P  x.  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R ) )  =  ( ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( -u 1 ^ R ) ) )
183 nnmulcl 10555 . . . . . . . . . . . . . . . . . 18  |-  ( ( Q  e.  NN  /\  x  e.  NN )  ->  ( Q  x.  x
)  e.  NN )
18471, 78, 183syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  x )  e.  NN )
185184nnnn0d 10848 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  x )  e.  NN0 )
186 2nn0 10808 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN0
187186a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  NN0 )
188154, 185, 187expmuld 12277 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( 2  x.  ( Q  x.  x ) ) )  =  ( ( -u
1 ^ 2 ) ^ ( Q  x.  x ) ) )
189 neg1sqe1 12227 . . . . . . . . . . . . . . . . 17  |-  ( -u
1 ^ 2 )  =  1
190189oveq1i 6292 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1 ^ 2 ) ^ ( Q  x.  x ) )  =  ( 1 ^ ( Q  x.  x
) )
191184nnzd 10961 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  x )  e.  ZZ )
192 1exp 12159 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  x.  x )  e.  ZZ  ->  (
1 ^ ( Q  x.  x ) )  =  1 )
193191, 192syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1 ^ ( Q  x.  x ) )  =  1 )
194190, 193syl5eq 2520 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ 2 ) ^ ( Q  x.  x ) )  =  1 )
195188, 194eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( 2  x.  ( Q  x.  x ) ) )  =  1 )
196153, 182, 1953eqtr3d 2516 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( -u 1 ^ R ) )  =  1 )
197196oveq1d 6297 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  x.  ( -u 1 ^ R ) )  x.  Q )  =  ( 1  x.  Q ) )
198101zcnd 10963 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  CC )
199115zcnd 10963 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  CC )
200198, 199, 133mulassd 9615 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  x.  ( -u 1 ^ R ) )  x.  Q )  =  ( ( -u 1 ^ ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  x.  (
( -u 1 ^ R
)  x.  Q ) ) )
201133mulid2d 9610 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1  x.  Q )  =  Q )
202197, 200, 2013eqtr3d 2516 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( ( -u
1 ^ R )  x.  Q ) )  =  Q )
203202fveq2d 5868 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( L `
 Q ) )
204127, 203eqtr3d 2510 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ( .r `  Y ) ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( L `
 Q ) )
205204mpteq2dva 4533 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ( .r `  Y ) ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  Q ) ) )
206123, 205eqtrd 2508 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  Q ) ) )
207206oveq2d 6298 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) ) )  =  ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  Q ) ) ) )
208 lgseisen.3 . . . . . . . 8  |-  ( ph  ->  P  =/=  Q )
209 lgseisen.5 . . . . . . . 8  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
210 lgseisen.6 . . . . . . . 8  |-  S  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
2116, 68, 208, 104, 209, 210, 8, 14, 25lgseisenlem3 23354 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  =  ( 1r `  Y
) )
212211oveq2d 6298 . . . . . 6  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) ) ( .r
`  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) ) )  =  ( ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) ( .r `  Y ) ( 1r `  Y
) ) )
213120, 207, 2123eqtr3rd 2517 . . . . 5  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) ) ( .r
`  Y ) ( 1r `  Y ) )  =  ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  Q ) ) ) )
214 eqid 2467 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
215102, 118fmptd 6043 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> ( Base `  Y
) )
216 fvex 5874 . . . . . . . . 9  |-  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  e.  _V
217216a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  e.  _V )
218 fvex 5874 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
219218a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
220118, 19, 217, 219fsuppmptdm 7836 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) finSupp  ( 0g
`  G ) )
22196, 214, 16, 19, 215, 220gsumcl 16714 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )  e.  ( Base `  Y
) )
222 eqid 2467 . . . . . . 7  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
22328, 97, 222rngridm 17010 . . . . . 6  |-  ( ( Y  e.  Ring  /\  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )  e.  ( Base `  Y
) )  ->  (
( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) ( .r `  Y ) ( 1r `  Y
) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) )
22424, 221, 223syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) ) ( .r
`  Y ) ( 1r `  Y ) )  =  ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) )
22569, 106syl 16 . . . . . . . 8  |-  ( ph  ->  Q  e.  ZZ )
22630, 225ffvelrnd 6020 . . . . . . 7  |-  ( ph  ->  ( L `  Q
)  e.  ( Base `  Y ) )
227 eqid 2467 . . . . . . . 8  |-  (.g `  G
)  =  (.g `  G
)
22896, 227gsumconst 16745 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin  /\  ( L `  Q )  e.  ( Base `  Y
) )  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  Q
) ) )  =  ( ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) ) (.g `  G ) ( L `  Q ) ) )
22918, 19, 226, 228syl3anc 1228 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  Q
) ) )  =  ( ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) ) (.g `  G ) ( L `  Q ) ) )
230 oddprm 14194 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
2316, 230syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
232231nnnn0d 10848 . . . . . . . 8  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN0 )
233 hashfz1 12383 . . . . . . . 8  |-  ( ( ( P  -  1 )  /  2 )  e.  NN0  ->  ( # `  ( 1 ... (
( P  -  1 )  /  2 ) ) )  =  ( ( P  -  1 )  /  2 ) )
234232, 233syl 16 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) )  =  ( ( P  -  1 )  / 
2 ) )
235234oveq1d 6297 . . . . . 6  |-  ( ph  ->  ( ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) ) (.g `  G ) ( L `  Q ) )  =  ( ( ( P  -  1 )  /  2 ) (.g `  G ) ( L `  Q ) ) )
23634, 1mgpbas 16937 . . . . . . . . 9  |-  ZZ  =  ( Base `  ( (mulGrp ` fld )s  ZZ ) )
237 eqid 2467 . . . . . . . . 9  |-  (.g `  (
(mulGrp ` fld )s  ZZ ) )  =  (.g `  ( (mulGrp ` fld )s  ZZ ) )
238236, 237, 227mhmmulg 15974 . . . . . . . 8  |-  ( ( L  e.  ( ( (mulGrp ` fld )s  ZZ ) MndHom  G )  /\  ( ( P  -  1 )  / 
2 )  e.  NN0  /\  Q  e.  ZZ )  ->  ( L `  ( ( ( P  -  1 )  / 
2 ) (.g `  (
(mulGrp ` fld )s  ZZ ) ) Q ) )  =  ( ( ( P  - 
1 )  /  2
) (.g `  G ) ( L `  Q ) ) )
23936, 232, 225, 238syl3anc 1228 . . . . . . 7  |-  ( ph  ->  ( L `  (
( ( P  - 
1 )  /  2
) (.g `  ( (mulGrp ` fld )s  ZZ ) ) Q ) )  =  ( ( ( P  -  1 )  /  2 ) (.g `  G ) ( L `  Q ) ) )
24056a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ZZ  e.  (SubMnd `  (mulGrp ` fld ) ) )
241 eqid 2467 . . . . . . . . . . 11  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
242241, 61, 237submmulg 15977 . . . . . . . . . 10  |-  ( ( ZZ  e.  (SubMnd `  (mulGrp ` fld ) )  /\  (
( P  -  1 )  /  2 )  e.  NN0  /\  Q  e.  ZZ )  ->  (
( ( P  - 
1 )  /  2
) (.g `  (mulGrp ` fld ) ) Q )  =  ( ( ( P  -  1 )  /  2 ) (.g `  ( (mulGrp ` fld )s  ZZ ) ) Q ) )
243240, 232, 225, 242syl3anc 1228 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  (mulGrp ` fld ) ) Q )  =  ( ( ( P  -  1 )  / 
2 ) (.g `  (
(mulGrp ` fld )s  ZZ ) ) Q ) )
244225zcnd 10963 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  CC )
245 cnfldexp 18222 . . . . . . . . . 10  |-  ( ( Q  e.  CC  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  (mulGrp ` fld ) ) Q )  =  ( Q ^ (
( P  -  1 )  /  2 ) ) )
246244, 232, 245syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  (mulGrp ` fld ) ) Q )  =  ( Q ^ (
( P  -  1 )  /  2 ) ) )
247243, 246eqtr3d 2510 . . . . . . . 8  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  (
(mulGrp ` fld )s  ZZ ) ) Q )  =  ( Q ^ ( ( P  -  1 )  / 
2 ) ) )
248247fveq2d 5868 . . . . . . 7  |-  ( ph  ->  ( L `  (
( ( P  - 
1 )  /  2
) (.g `  ( (mulGrp ` fld )s  ZZ ) ) Q ) )  =  ( L `
 ( Q ^
( ( P  - 
1 )  /  2
) ) ) )
249239, 248eqtr3d 2510 . . . . . 6  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  G
) ( L `  Q ) )  =  ( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) ) )
250229, 235, 2493eqtrd 2512 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  Q
) ) )  =  ( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) ) )
251213, 224, 2503eqtr3d 2516 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )  =  ( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) ) )
252 subrgsubg 17218 . . . . . . . . . 10  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  e.  (SubGrp ` fld ) )
25354, 252ax-mp 5 . . . . . . . . 9  |-  ZZ  e.  (SubGrp ` fld )
254 subgsubm 16018 . . . . . . . . 9  |-  ( ZZ  e.  (SubGrp ` fld )  ->  ZZ  e.  (SubMnd ` fld ) )
255253, 254mp1i 12 . . . . . . . 8  |-  ( ph  ->  ZZ  e.  (SubMnd ` fld )
)
25684, 85fmptd 6043 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> ZZ )
257 df-zring 18257 . . . . . . . 8  |-ring  =  (flds  ZZ )
25819, 255, 256, 257gsumsubm 15821 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  =  (ring  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
25984zcnd 10963 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  CC )
26019, 259gsumfsum 18252 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  =  sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )
261258, 260eqtr3d 2510 . . . . . 6  |-  ( ph  ->  (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  =  sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )
262261oveq2d 6298 . . . . 5  |-  ( ph  ->  ( -u 1 ^ (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) ) )  =  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )
263262fveq2d 5868 . . . 4  |-  ( ph  ->  ( L `  ( -u 1 ^ (ring  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) ) )  =  ( L `
 ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) )
26495, 251, 2633eqtr3d 2516 . . 3  |-  ( ph  ->  ( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( L `  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
26574nnnn0d 10848 . . . 4  |-  ( ph  ->  P  e.  NN0 )
266 zexpcl 12145 . . . . 5  |-  ( ( Q  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( Q ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
267225, 232, 266syl2anc 661 . . . 4  |-  ( ph  ->  ( Q ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
26819, 84fsumzcl 13516 . . . . 5  |-  ( ph  -> 
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) )  e.  ZZ )
269 m1expcl 12153 . . . . 5  |-  ( sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ  ->  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  e.  ZZ )
270268, 269syl 16 . . . 4  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  ZZ )
2718, 25zndvds 18355 . . . 4  |-  ( ( P  e.  NN0  /\  ( Q ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  /\  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  e.  ZZ )  ->  (
( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( L `  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) )  <->  P  ||  ( ( Q ^ ( ( P  -  1 )  /  2 ) )  -  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) ) )
272265, 267, 270, 271syl3anc 1228 . . 3  |-  ( ph  ->  ( ( L `  ( Q ^ ( ( P  -  1 )  /  2 ) ) )  =  ( L `
 ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) )  <->  P  ||  (
( Q ^ (
( P  -  1 )  /  2 ) )  -  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) )
273264, 272mpbid 210 . 2  |-  ( ph  ->  P  ||  ( ( Q ^ ( ( P  -  1 )  /  2 ) )  -  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) )
274 moddvds 13850 . . 3  |-  ( ( P  e.  NN  /\  ( Q ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  /\  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  e.  ZZ )  ->  (
( ( Q ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  mod  P )  <->  P  ||  (
( Q ^ (
( P  -  1 )  /  2 ) )  -  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) )
27574, 267, 270, 274syl3anc 1228 . 2  |-  ( ph  ->  ( ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  mod  P )  <-> 
P  ||  ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  -  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )
276273, 275mpbird 232 1  |-  ( ph  ->  ( ( Q ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  mod  P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113    \ cdif 3473    C_ wss 3476   {csn 4027   class class class wbr 4447    |-> cmpt 4505   ran crn 5000    o. ccom 5003   -->wf 5582   ` cfv 5586  (class class class)co 6282    oFcof 6520   Fincfn 7513   CCcc 9486   RRcr 9487   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493    - cmin 9801   -ucneg 9802    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216   ...cfz 11668   |_cfl 11891    mod cmo 11960   ^cexp 12130   #chash 12369   sum_csu 13467    || cdivides 13843   Primecprime 14072   Basecbs 14486   ↾s cress 14487   .rcmulr 14552   0gc0g 14691    gsumg cgsu 14692   Mndcmnd 15722  .gcmg 15727   MndHom cmhm 15775  SubMndcsubmnd 15776  SubGrpcsubg 15990    GrpHom cghm 16059  CMndccmn 16594   Abelcabl 16595  mulGrpcmgp 16931   1rcur 16943   Ringcrg 16986   CRingccrg 16987   RingHom crh 17145   DivRingcdr 17179  Fieldcfield 17180  SubRingcsubrg 17208  ℂfldccnfld 18191  ℤringzring 18256   ZRHomczrh 18304  ℤ/nczn 18307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11961  df-seq 12072  df-exp 12131  df-hash 12370  df-cj 12891  df-re 12892  df-im 12893  df-sqrt 13027  df-abs 13028  df-clim 13270  df-sum 13468  df-dvds 13844  df-gcd 14000  df-prm 14073  df-struct 14488  df-ndx 14489  df-slot 14490  df-base 14491  df-sets 14492  df-ress 14493  df-plusg 14564  df-mulr 14565  df-starv 14566  df-sca 14567  df-vsca 14568  df-ip 14569  df-tset 14570  df-ple 14571  df-ds 14573  df-unif 14574  df-0g 14693  df-gsum 14694  df-imas 14759  df-divs 14760  df-mnd 15728  df-mhm 15777  df-submnd 15778  df-grp 15858  df-minusg 15859  df-sbg 15860  df-mulg 15861  df-subg 15993  df-nsg 15994  df-eqg 15995  df-ghm 16060  df-cntz 16150  df-cmn 16596  df-abl 16597  df-mgp 16932  df-ur 16944  df-rng 16988  df-cring 16989  df-oppr 17056  df-dvdsr 17074  df-unit 17075  df-invr 17105  df-dvr 17116  df-rnghom 17148  df-drng 17181  df-field 17182  df-subrg 17210  df-lmod 17297  df-lss 17362  df-lsp 17401  df-sra 17601  df-rgmod 17602  df-lidl 17603  df-rsp 17604  df-2idl 17662  df-nzr 17688  df-rlreg 17702  df-domn 17703  df-idom 17704  df-cnfld 18192  df-zring 18257  df-zrh 18308  df-zn 18311
This theorem is referenced by:  lgseisen  23356
  Copyright terms: Public domain W3C validator