MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem4 Structured version   Unicode version

Theorem lgseisenlem4 22823
Description: Lemma for lgseisen 22824. The function  M is an injection (and hence a bijection by the pigeonhole principle). (Contributed by Mario Carneiro, 18-Jun-2015.) (Proof shortened by AV, 15-Jun-2019.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgseisen.4  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
lgseisen.5  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
lgseisen.6  |-  S  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
lgseisen.7  |-  Y  =  (ℤ/n `  P )
lgseisen.8  |-  G  =  (mulGrp `  Y )
lgseisen.9  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
lgseisenlem4  |-  ( ph  ->  ( ( Q ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  mod  P ) )
Distinct variable groups:    x, G    x, L    x, y, P    ph, x, y    y, M   
x, Q, y    x, Y    x, S
Allowed substitution hints:    R( x, y)    S( y)    G( y)    L( y)    M( x)    Y( y)

Proof of Theorem lgseisenlem4
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 zringbas 18013 . . . . 5  |-  ZZ  =  ( Base ` ring )
2 zring0 18017 . . . . 5  |-  0  =  ( 0g ` ring )
3 zringabl 18011 . . . . . 6  |-ring  e.  Abel
4 ablcmn 16403 . . . . . 6  |-  (ring  e.  Abel  ->ring  e. CMnd )
53, 4mp1i 12 . . . . 5  |-  ( ph  ->ring  e. CMnd
)
6 lgseisen.1 . . . . . . . . . 10  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
76eldifad 3447 . . . . . . . . 9  |-  ( ph  ->  P  e.  Prime )
8 lgseisen.7 . . . . . . . . . 10  |-  Y  =  (ℤ/n `  P )
98znfld 18117 . . . . . . . . 9  |-  ( P  e.  Prime  ->  Y  e. Field
)
107, 9syl 16 . . . . . . . 8  |-  ( ph  ->  Y  e. Field )
11 isfld 16963 . . . . . . . . 9  |-  ( Y  e. Field 
<->  ( Y  e.  DivRing  /\  Y  e.  CRing ) )
1211simprbi 464 . . . . . . . 8  |-  ( Y  e. Field  ->  Y  e.  CRing )
1310, 12syl 16 . . . . . . 7  |-  ( ph  ->  Y  e.  CRing )
14 lgseisen.8 . . . . . . . 8  |-  G  =  (mulGrp `  Y )
1514crngmgp 16775 . . . . . . 7  |-  ( Y  e.  CRing  ->  G  e. CMnd )
1613, 15syl 16 . . . . . 6  |-  ( ph  ->  G  e. CMnd )
17 cmnmnd 16412 . . . . . 6  |-  ( G  e. CMnd  ->  G  e.  Mnd )
1816, 17syl 16 . . . . 5  |-  ( ph  ->  G  e.  Mnd )
19 fzfid 11911 . . . . 5  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin )
20 m1expcl 12004 . . . . . . . 8  |-  ( k  e.  ZZ  ->  ( -u 1 ^ k )  e.  ZZ )
2120adantl 466 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( -u
1 ^ k )  e.  ZZ )
22 eqidd 2455 . . . . . . 7  |-  ( ph  ->  ( k  e.  ZZ  |->  ( -u 1 ^ k
) )  =  ( k  e.  ZZ  |->  (
-u 1 ^ k
) ) )
23 crngrng 16777 . . . . . . . . . . 11  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
2413, 23syl 16 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  Ring )
25 lgseisen.9 . . . . . . . . . . 11  |-  L  =  ( ZRHom `  Y
)
2625zrhrhm 18067 . . . . . . . . . 10  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
2724, 26syl 16 . . . . . . . . 9  |-  ( ph  ->  L  e.  (ring RingHom  Y ) )
28 eqid 2454 . . . . . . . . . 10  |-  ( Base `  Y )  =  (
Base `  Y )
291, 28rhmf 16938 . . . . . . . . 9  |-  ( L  e.  (ring RingHom  Y )  ->  L : ZZ --> ( Base `  Y
) )
3027, 29syl 16 . . . . . . . 8  |-  ( ph  ->  L : ZZ --> ( Base `  Y ) )
3130feqmptd 5852 . . . . . . 7  |-  ( ph  ->  L  =  ( x  e.  ZZ  |->  ( L `
 x ) ) )
32 fveq2 5798 . . . . . . 7  |-  ( x  =  ( -u 1 ^ k )  -> 
( L `  x
)  =  ( L `
 ( -u 1 ^ k ) ) )
3321, 22, 31, 32fmptco 5984 . . . . . 6  |-  ( ph  ->  ( L  o.  (
k  e.  ZZ  |->  (
-u 1 ^ k
) ) )  =  ( k  e.  ZZ  |->  ( L `  ( -u
1 ^ k ) ) ) )
34 zringmpg 18040 . . . . . . . . 9  |-  ( (mulGrp ` fld )s  ZZ )  =  (mulGrp ` ring )
3534, 14rhmmhm 16934 . . . . . . . 8  |-  ( L  e.  (ring RingHom  Y )  ->  L  e.  ( ( (mulGrp ` fld )s  ZZ ) MndHom  G ) )
3627, 35syl 16 . . . . . . 7  |-  ( ph  ->  L  e.  ( ( (mulGrp ` fld )s  ZZ ) MndHom  G ) )
37 neg1cn 10535 . . . . . . . . . . 11  |-  -u 1  e.  CC
38 neg1ne0 10537 . . . . . . . . . . 11  |-  -u 1  =/=  0
39 eqid 2454 . . . . . . . . . . . 12  |-  (mulGrp ` fld )  =  (mulGrp ` fld )
40 eqid 2454 . . . . . . . . . . . 12  |-  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )  =  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) )
4139, 40expghm 18047 . . . . . . . . . . 11  |-  ( (
-u 1  e.  CC  /\  -u 1  =/=  0
)  ->  ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) )
4237, 38, 41mp2an 672 . . . . . . . . . 10  |-  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  e.  (ring  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )
43 ghmmhm 15875 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  |->  (
-u 1 ^ k
) )  e.  (ring  GrpHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )  ->  (
k  e.  ZZ  |->  (
-u 1 ^ k
) )  e.  (ring MndHom  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) ) )
4442, 43ax-mp 5 . . . . . . . . 9  |-  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  e.  (ring MndHom  ( (mulGrp ` fld )s  ( CC  \  { 0 } ) ) )
45 cnrng 17962 . . . . . . . . . 10  |-fld  e.  Ring
46 cnfldbas 17946 . . . . . . . . . . . 12  |-  CC  =  ( Base ` fld )
47 cnfld0 17964 . . . . . . . . . . . 12  |-  0  =  ( 0g ` fld )
48 cndrng 17969 . . . . . . . . . . . 12  |-fld  e.  DivRing
4946, 47, 48drngui 16960 . . . . . . . . . . 11  |-  ( CC 
\  { 0 } )  =  (Unit ` fld )
5049, 39unitsubm 16884 . . . . . . . . . 10  |-  (fld  e.  Ring  -> 
( CC  \  {
0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )
5145, 50ax-mp 5 . . . . . . . . 9  |-  ( CC 
\  { 0 } )  e.  (SubMnd `  (mulGrp ` fld ) )
5240resmhm2 15606 . . . . . . . . 9  |-  ( ( ( k  e.  ZZ  |->  ( -u 1 ^ k
) )  e.  (ring MndHom  (
(mulGrp ` fld )s  ( CC  \  { 0 } ) ) )  /\  ( CC  \  { 0 } )  e.  (SubMnd `  (mulGrp ` fld ) ) )  -> 
( k  e.  ZZ  |->  ( -u 1 ^ k
) )  e.  (ring MndHom  (mulGrp ` fld ) ) )
5344, 51, 52mp2an 672 . . . . . . . 8  |-  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  e.  (ring MndHom  (mulGrp ` fld ) )
54 zsubrg 17990 . . . . . . . . . 10  |-  ZZ  e.  (SubRing ` fld )
5539subrgsubm 17000 . . . . . . . . . 10  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  e.  (SubMnd `  (mulGrp ` fld ) ) )
5654, 55ax-mp 5 . . . . . . . . 9  |-  ZZ  e.  (SubMnd `  (mulGrp ` fld ) )
57 eqid 2454 . . . . . . . . . . 11  |-  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  =  ( k  e.  ZZ  |->  ( -u
1 ^ k ) )
5821, 57fmptd 5975 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  ZZ  |->  ( -u 1 ^ k
) ) : ZZ --> ZZ )
59 frn 5672 . . . . . . . . . 10  |-  ( ( k  e.  ZZ  |->  (
-u 1 ^ k
) ) : ZZ --> ZZ  ->  ran  ( k  e.  ZZ  |->  ( -u 1 ^ k ) ) 
C_  ZZ )
6058, 59syl 16 . . . . . . . . 9  |-  ( ph  ->  ran  ( k  e.  ZZ  |->  ( -u 1 ^ k ) ) 
C_  ZZ )
61 eqid 2454 . . . . . . . . . 10  |-  ( (mulGrp ` fld )s  ZZ )  =  (
(mulGrp ` fld )s  ZZ )
6261resmhm2b 15607 . . . . . . . . 9  |-  ( ( ZZ  e.  (SubMnd `  (mulGrp ` fld ) )  /\  ran  ( k  e.  ZZ  |->  ( -u 1 ^ k
) )  C_  ZZ )  ->  ( ( k  e.  ZZ  |->  ( -u
1 ^ k ) )  e.  (ring MndHom  (mulGrp ` fld ) )  <->  ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring MndHom  ( (mulGrp ` fld )s  ZZ ) ) ) )
6356, 60, 62sylancr 663 . . . . . . . 8  |-  ( ph  ->  ( ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring MndHom  (mulGrp ` fld ) )  <->  ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring MndHom  ( (mulGrp ` fld )s  ZZ ) ) ) )
6453, 63mpbii 211 . . . . . . 7  |-  ( ph  ->  ( k  e.  ZZ  |->  ( -u 1 ^ k
) )  e.  (ring MndHom  (
(mulGrp ` fld )s  ZZ ) ) )
65 mhmco 15608 . . . . . . 7  |-  ( ( L  e.  ( ( (mulGrp ` fld )s  ZZ ) MndHom  G )  /\  ( k  e.  ZZ  |->  ( -u 1 ^ k ) )  e.  (ring MndHom  ( (mulGrp ` fld )s  ZZ ) ) )  ->  ( L  o.  ( k  e.  ZZ  |->  ( -u 1 ^ k
) ) )  e.  (ring MndHom  G ) )
6636, 64, 65syl2anc 661 . . . . . 6  |-  ( ph  ->  ( L  o.  (
k  e.  ZZ  |->  (
-u 1 ^ k
) ) )  e.  (ring MndHom  G ) )
6733, 66eqeltrrd 2543 . . . . 5  |-  ( ph  ->  ( k  e.  ZZ  |->  ( L `  ( -u
1 ^ k ) ) )  e.  (ring MndHom  G
) )
68 lgseisen.2 . . . . . . . . . . . 12  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
6968eldifad 3447 . . . . . . . . . . 11  |-  ( ph  ->  Q  e.  Prime )
70 prmnn 13883 . . . . . . . . . . 11  |-  ( Q  e.  Prime  ->  Q  e.  NN )
7169, 70syl 16 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  NN )
7271nnred 10447 . . . . . . . . 9  |-  ( ph  ->  Q  e.  RR )
73 prmnn 13883 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  P  e.  NN )
747, 73syl 16 . . . . . . . . 9  |-  ( ph  ->  P  e.  NN )
7572, 74nndivred 10480 . . . . . . . 8  |-  ( ph  ->  ( Q  /  P
)  e.  RR )
7675adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  /  P )  e.  RR )
77 2nn 10589 . . . . . . . . 9  |-  2  e.  NN
78 elfznn 11594 . . . . . . . . . 10  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  NN )
7978adantl 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  NN )
80 nnmulcl 10455 . . . . . . . . 9  |-  ( ( 2  e.  NN  /\  x  e.  NN )  ->  ( 2  x.  x
)  e.  NN )
8177, 79, 80sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  NN )
8281nnred 10447 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  RR )
8376, 82remulcld 9524 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  /  P
)  x.  ( 2  x.  x ) )  e.  RR )
8483flcld 11764 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ )
85 eqid 2454 . . . . . 6  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )
86 fvex 5808 . . . . . . 7  |-  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e. 
_V
8786a1i 11 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e. 
_V )
88 c0ex 9490 . . . . . . 7  |-  0  e.  _V
8988a1i 11 . . . . . 6  |-  ( ph  ->  0  e.  _V )
9085, 19, 87, 89fsuppmptdm 7741 . . . . 5  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) finSupp  0 )
91 oveq2 6207 . . . . . 6  |-  ( k  =  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) )  ->  ( -u 1 ^ k )  =  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
9291fveq2d 5802 . . . . 5  |-  ( k  =  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) )  ->  ( L `  ( -u 1 ^ k ) )  =  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
93 oveq2 6207 . . . . . 6  |-  ( k  =  (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  ->  ( -u 1 ^ k )  =  ( -u 1 ^ (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) ) ) )
9493fveq2d 5802 . . . . 5  |-  ( k  =  (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  ->  ( L `  ( -u 1 ^ k ) )  =  ( L `  ( -u 1 ^ (ring  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) ) ) )
951, 2, 5, 18, 19, 67, 84, 90, 92, 94gsummhm2 16555 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )  =  ( L `  ( -u 1 ^ (ring  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) ) ) )
9614, 28mgpbas 16718 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  G )
97 eqid 2454 . . . . . . . 8  |-  ( .r
`  Y )  =  ( .r `  Y
)
9814, 97mgpplusg 16716 . . . . . . 7  |-  ( .r
`  Y )  =  ( +g  `  G
)
9930adantr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  L : ZZ --> ( Base `  Y
) )
100 m1expcl 12004 . . . . . . . . 9  |-  ( ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) )  e.  ZZ  ->  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  ZZ )
10184, 100syl 16 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  ZZ )
10299, 101ffvelrnd 5952 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  e.  ( Base `  Y
) )
103 neg1z 10791 . . . . . . . . . 10  |-  -u 1  e.  ZZ
104 lgseisen.4 . . . . . . . . . . 11  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
10569adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  Prime )
106 prmz 13884 . . . . . . . . . . . . . 14  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
107105, 106syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  ZZ )
10881nnzd 10856 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ZZ )
109107, 108zmulcld 10863 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  ZZ )
1107adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  Prime )
111110, 73syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN )
112109, 111zmodcld 11844 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  e.  NN0 )
113104, 112syl5eqel 2546 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  NN0 )
114 zexpcl 11996 . . . . . . . . . 10  |-  ( (
-u 1  e.  ZZ  /\  R  e.  NN0 )  ->  ( -u 1 ^ R )  e.  ZZ )
115103, 113, 114sylancr 663 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  ZZ )
116115, 107zmulcld 10863 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  Q )  e.  ZZ )
11799, 116ffvelrnd 5952 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ R )  x.  Q ) )  e.  ( Base `  Y
) )
118 eqid 2454 . . . . . . 7  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) )
119 eqid 2454 . . . . . . 7  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )
12096, 98, 16, 19, 102, 117, 118, 119gsummptfidmadd2 16537 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) ) )  =  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) ) ) )
121 eqidd 2455 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )
122 eqidd 2455 . . . . . . . . 9  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ) )
12319, 102, 117, 121, 122offval2 6445 . . . . . . . 8  |-  ( ph  ->  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ( .r `  Y
) ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) ) )
12427adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  L  e.  (ring RingHom  Y ) )
125 zringmulr 18016 . . . . . . . . . . . 12  |-  x.  =  ( .r ` ring )
1261, 125, 97rhmmul 16939 . . . . . . . . . . 11  |-  ( ( L  e.  (ring RingHom  Y )  /\  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  ZZ  /\  (
( -u 1 ^ R
)  x.  Q )  e.  ZZ )  -> 
( L `  (
( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ( .r `  Y ) ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) )
127124, 101, 116, 126syl3anc 1219 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ( .r `  Y ) ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) )
128109zred 10857 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  RR )
129111nnrpd 11136 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  RR+ )
130 modval 11826 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Q  x.  (
2  x.  x ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( Q  x.  ( 2  x.  x
) )  mod  P
)  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x ) )  /  P ) ) ) ) )
131128, 129, 130syl2anc 661 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x ) )  /  P ) ) ) ) )
132104, 131syl5eq 2507 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x ) )  /  P ) ) ) ) )
133107zcnd 10858 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  CC )
13481nncnd 10448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  CC )
135111nncnd 10448 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  CC )
136111nnne0d 10476 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  =/=  0 )
137133, 134, 135, 136div23d 10254 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  /  P )  =  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )
138137fveq2d 5802 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  x.  ( 2  x.  x ) )  /  P ) )  =  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )
139138oveq2d 6215 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x
) )  /  P
) ) )  =  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) )
140139oveq2d 6215 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  x.  ( 2  x.  x
) )  /  P
) ) ) )  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
141132, 140eqtrd 2495 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  =  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
142141oveq2d 6215 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R )  =  ( ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  +  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) ) ) )
143 prmz 13884 . . . . . . . . . . . . . . . . . . . 20  |-  ( P  e.  Prime  ->  P  e.  ZZ )
144110, 143syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  ZZ )
145144, 84zmulcld 10863 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  e.  ZZ )
146145zcnd 10858 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  e.  CC )
147109zcnd 10858 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  CC )
148146, 147pncan3d 9832 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  ( ( Q  x.  ( 2  x.  x ) )  -  ( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  =  ( Q  x.  ( 2  x.  x ) ) )
149 2cnd 10504 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  CC )
15079nncnd 10448 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  CC )
151133, 149, 150mul12d 9688 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  =  ( 2  x.  ( Q  x.  x
) ) )
152142, 148, 1513eqtrd 2499 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R )  =  ( 2  x.  ( Q  x.  x )
) )
153152oveq2d 6215 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( ( P  x.  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R ) )  =  ( -u 1 ^ ( 2  x.  ( Q  x.  x
) ) ) )
15437a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u 1  e.  CC )
15538a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u 1  =/=  0 )
156113nn0zd 10855 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ZZ )
157 expaddz 12024 . . . . . . . . . . . . . . . 16  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  ZZ  /\  R  e.  ZZ ) )  -> 
( -u 1 ^ (
( P  x.  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R ) )  =  ( ( -u
1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  x.  ( -u 1 ^ R ) ) )
158154, 155, 145, 156, 157syl22anc 1220 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( ( P  x.  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R ) )  =  ( ( -u
1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  x.  ( -u 1 ^ R ) ) )
159 expmulz 12026 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  ( P  e.  ZZ  /\  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ ) )  -> 
( -u 1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( ( -u
1 ^ P ) ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
160154, 155, 144, 84, 159syl22anc 1220 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( ( -u
1 ^ P ) ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
161 1cnd 9512 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  1  e.  CC )
162 eldifsni 4108 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  ( Prime  \  {
2 } )  ->  P  =/=  2 )
1636, 162syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  P  =/=  2 )
164163necomd 2722 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  2  =/=  P )
165164neneqd 2654 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  -.  2  =  P )
166165adantr 465 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  2  =  P )
167 2z 10788 . . . . . . . . . . . . . . . . . . . . . . 23  |-  2  e.  ZZ
168 uzid 10985 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( 2  e.  ZZ  ->  2  e.  ( ZZ>= `  2 )
)
169167, 168ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22  |-  2  e.  ( ZZ>= `  2 )
170 dvdsprm 13902 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( 2  e.  ( ZZ>= ` 
2 )  /\  P  e.  Prime )  ->  (
2  ||  P  <->  2  =  P ) )
171169, 110, 170sylancr 663 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  ||  P  <->  2  =  P ) )
172166, 171mtbird 301 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  2  ||  P )
173 oexpneg 13712 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  CC  /\  P  e.  NN  /\  -.  2  ||  P )  -> 
( -u 1 ^ P
)  =  -u (
1 ^ P ) )
174161, 111, 172, 173syl3anc 1219 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ P )  =  -u ( 1 ^ P ) )
175 1exp 12009 . . . . . . . . . . . . . . . . . . . . 21  |-  ( P  e.  ZZ  ->  (
1 ^ P )  =  1 )
176144, 175syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1 ^ P )  =  1 )
177176negeqd 9714 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u (
1 ^ P )  =  -u 1 )
178174, 177eqtrd 2495 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ P )  =  -u 1 )
179178oveq1d 6214 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ P
) ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  =  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
180160, 179eqtrd 2495 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  =  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )
181180oveq1d 6214 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ ( P  x.  ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  x.  ( -u 1 ^ R ) )  =  ( ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  x.  ( -u 1 ^ R ) ) )
182158, 181eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( ( P  x.  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  +  R ) )  =  ( ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( -u 1 ^ R ) ) )
183 nnmulcl 10455 . . . . . . . . . . . . . . . . . 18  |-  ( ( Q  e.  NN  /\  x  e.  NN )  ->  ( Q  x.  x
)  e.  NN )
18471, 78, 183syl2an 477 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  x )  e.  NN )
185184nnnn0d 10746 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  x )  e.  NN0 )
186 2nn0 10706 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN0
187186a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  NN0 )
188154, 185, 187expmuld 12127 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( 2  x.  ( Q  x.  x ) ) )  =  ( ( -u
1 ^ 2 ) ^ ( Q  x.  x ) ) )
189 neg1sqe1 12077 . . . . . . . . . . . . . . . . 17  |-  ( -u
1 ^ 2 )  =  1
190189oveq1i 6209 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1 ^ 2 ) ^ ( Q  x.  x ) )  =  ( 1 ^ ( Q  x.  x
) )
191184nnzd 10856 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  x )  e.  ZZ )
192 1exp 12009 . . . . . . . . . . . . . . . . 17  |-  ( ( Q  x.  x )  e.  ZZ  ->  (
1 ^ ( Q  x.  x ) )  =  1 )
193191, 192syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1 ^ ( Q  x.  x ) )  =  1 )
194190, 193syl5eq 2507 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ 2 ) ^ ( Q  x.  x ) )  =  1 )
195188, 194eqtrd 2495 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( 2  x.  ( Q  x.  x ) ) )  =  1 )
196153, 182, 1953eqtr3d 2503 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( -u 1 ^ R ) )  =  1 )
197196oveq1d 6214 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  x.  ( -u 1 ^ R ) )  x.  Q )  =  ( 1  x.  Q ) )
198101zcnd 10858 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  e.  CC )
199115zcnd 10858 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  CC )
200198, 199, 133mulassd 9519 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  x.  ( -u 1 ^ R ) )  x.  Q )  =  ( ( -u 1 ^ ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  x.  (
( -u 1 ^ R
)  x.  Q ) ) )
201133mulid2d 9514 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1  x.  Q )  =  Q )
202197, 200, 2013eqtr3d 2503 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( ( -u
1 ^ R )  x.  Q ) )  =  Q )
203202fveq2d 5802 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  x.  ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( L `
 Q ) )
204127, 203eqtr3d 2497 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ( .r `  Y ) ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( L `
 Q ) )
205204mpteq2dva 4485 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ( .r `  Y ) ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  Q ) ) )
206123, 205eqtrd 2495 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  Q ) ) )
207206oveq2d 6215 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ) ) )  =  ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  Q ) ) ) )
208 lgseisen.3 . . . . . . . 8  |-  ( ph  ->  P  =/=  Q )
209 lgseisen.5 . . . . . . . 8  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
210 lgseisen.6 . . . . . . . 8  |-  S  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
2116, 68, 208, 104, 209, 210, 8, 14, 25lgseisenlem3 22822 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  =  ( 1r `  Y
) )
212211oveq2d 6215 . . . . . 6  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) ) ( .r
`  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) ) )  =  ( ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) ( .r `  Y ) ( 1r `  Y
) ) )
213120, 207, 2123eqtr3rd 2504 . . . . 5  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) ) ( .r
`  Y ) ( 1r `  Y ) )  =  ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  Q ) ) ) )
214 eqid 2454 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
215102, 118fmptd 5975 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> ( Base `  Y
) )
216 fvex 5808 . . . . . . . . 9  |-  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  e.  _V
217216a1i 11 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) )  e.  _V )
218 fvex 5808 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
219218a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
220118, 19, 217, 219fsuppmptdm 7741 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) finSupp  ( 0g
`  G ) )
22196, 214, 16, 19, 215, 220gsumcl 16517 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )  e.  ( Base `  Y
) )
222 eqid 2454 . . . . . . 7  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
22328, 97, 222rngridm 16791 . . . . . 6  |-  ( ( Y  e.  Ring  /\  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )  e.  ( Base `  Y
) )  ->  (
( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) ( .r `  Y ) ( 1r `  Y
) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) )
22424, 221, 223syl2anc 661 . . . . 5  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( -u 1 ^ ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) ) ( .r
`  Y ) ( 1r `  Y ) )  =  ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( -u
1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) ) )
22569, 106syl 16 . . . . . . . 8  |-  ( ph  ->  Q  e.  ZZ )
22630, 225ffvelrnd 5952 . . . . . . 7  |-  ( ph  ->  ( L `  Q
)  e.  ( Base `  Y ) )
227 eqid 2454 . . . . . . . 8  |-  (.g `  G
)  =  (.g `  G
)
22896, 227gsumconst 16548 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin  /\  ( L `  Q )  e.  ( Base `  Y
) )  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  Q
) ) )  =  ( ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) ) (.g `  G ) ( L `  Q ) ) )
22918, 19, 226, 228syl3anc 1219 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  Q
) ) )  =  ( ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) ) (.g `  G ) ( L `  Q ) ) )
230 oddprm 13999 . . . . . . . . . 10  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
2316, 230syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN )
232231nnnn0d 10746 . . . . . . . 8  |-  ( ph  ->  ( ( P  - 
1 )  /  2
)  e.  NN0 )
233 hashfz1 12233 . . . . . . . 8  |-  ( ( ( P  -  1 )  /  2 )  e.  NN0  ->  ( # `  ( 1 ... (
( P  -  1 )  /  2 ) ) )  =  ( ( P  -  1 )  /  2 ) )
234232, 233syl 16 . . . . . . 7  |-  ( ph  ->  ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) )  =  ( ( P  -  1 )  / 
2 ) )
235234oveq1d 6214 . . . . . 6  |-  ( ph  ->  ( ( # `  (
1 ... ( ( P  -  1 )  / 
2 ) ) ) (.g `  G ) ( L `  Q ) )  =  ( ( ( P  -  1 )  /  2 ) (.g `  G ) ( L `  Q ) ) )
23634, 1mgpbas 16718 . . . . . . . . 9  |-  ZZ  =  ( Base `  ( (mulGrp ` fld )s  ZZ ) )
237 eqid 2454 . . . . . . . . 9  |-  (.g `  (
(mulGrp ` fld )s  ZZ ) )  =  (.g `  ( (mulGrp ` fld )s  ZZ ) )
238236, 237, 227mhmmulg 15777 . . . . . . . 8  |-  ( ( L  e.  ( ( (mulGrp ` fld )s  ZZ ) MndHom  G )  /\  ( ( P  -  1 )  / 
2 )  e.  NN0  /\  Q  e.  ZZ )  ->  ( L `  ( ( ( P  -  1 )  / 
2 ) (.g `  (
(mulGrp ` fld )s  ZZ ) ) Q ) )  =  ( ( ( P  - 
1 )  /  2
) (.g `  G ) ( L `  Q ) ) )
23936, 232, 225, 238syl3anc 1219 . . . . . . 7  |-  ( ph  ->  ( L `  (
( ( P  - 
1 )  /  2
) (.g `  ( (mulGrp ` fld )s  ZZ ) ) Q ) )  =  ( ( ( P  -  1 )  /  2 ) (.g `  G ) ( L `  Q ) ) )
24056a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ZZ  e.  (SubMnd `  (mulGrp ` fld ) ) )
241 eqid 2454 . . . . . . . . . . 11  |-  (.g `  (mulGrp ` fld ) )  =  (.g `  (mulGrp ` fld ) )
242241, 61, 237submmulg 15780 . . . . . . . . . 10  |-  ( ( ZZ  e.  (SubMnd `  (mulGrp ` fld ) )  /\  (
( P  -  1 )  /  2 )  e.  NN0  /\  Q  e.  ZZ )  ->  (
( ( P  - 
1 )  /  2
) (.g `  (mulGrp ` fld ) ) Q )  =  ( ( ( P  -  1 )  /  2 ) (.g `  ( (mulGrp ` fld )s  ZZ ) ) Q ) )
243240, 232, 225, 242syl3anc 1219 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  (mulGrp ` fld ) ) Q )  =  ( ( ( P  -  1 )  / 
2 ) (.g `  (
(mulGrp ` fld )s  ZZ ) ) Q ) )
244225zcnd 10858 . . . . . . . . . 10  |-  ( ph  ->  Q  e.  CC )
245 cnfldexp 17973 . . . . . . . . . 10  |-  ( ( Q  e.  CC  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  (mulGrp ` fld ) ) Q )  =  ( Q ^ (
( P  -  1 )  /  2 ) ) )
246244, 232, 245syl2anc 661 . . . . . . . . 9  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  (mulGrp ` fld ) ) Q )  =  ( Q ^ (
( P  -  1 )  /  2 ) ) )
247243, 246eqtr3d 2497 . . . . . . . 8  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  (
(mulGrp ` fld )s  ZZ ) ) Q )  =  ( Q ^ ( ( P  -  1 )  / 
2 ) ) )
248247fveq2d 5802 . . . . . . 7  |-  ( ph  ->  ( L `  (
( ( P  - 
1 )  /  2
) (.g `  ( (mulGrp ` fld )s  ZZ ) ) Q ) )  =  ( L `
 ( Q ^
( ( P  - 
1 )  /  2
) ) ) )
249239, 248eqtr3d 2497 . . . . . 6  |-  ( ph  ->  ( ( ( P  -  1 )  / 
2 ) (.g `  G
) ( L `  Q ) )  =  ( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) ) )
250229, 235, 2493eqtrd 2499 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  Q
) ) )  =  ( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) ) )
251213, 224, 2503eqtr3d 2503 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  ( -u 1 ^ ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )  =  ( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) ) )
252 subrgsubg 16993 . . . . . . . . . 10  |-  ( ZZ  e.  (SubRing ` fld )  ->  ZZ  e.  (SubGrp ` fld ) )
25354, 252ax-mp 5 . . . . . . . . 9  |-  ZZ  e.  (SubGrp ` fld )
254 subgsubm 15821 . . . . . . . . 9  |-  ( ZZ  e.  (SubGrp ` fld )  ->  ZZ  e.  (SubMnd ` fld ) )
255253, 254mp1i 12 . . . . . . . 8  |-  ( ph  ->  ZZ  e.  (SubMnd ` fld )
)
25684, 85fmptd 5975 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> ZZ )
257 df-zring 18008 . . . . . . . 8  |-ring  =  (flds  ZZ )
25819, 255, 256, 257gsumsubm 15626 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  =  (ring  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
25984zcnd 10858 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  CC )
26019, 259gsumfsum 18003 . . . . . . 7  |-  ( ph  ->  (fld 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  =  sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )
261258, 260eqtr3d 2497 . . . . . 6  |-  ( ph  ->  (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )  =  sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )
262261oveq2d 6215 . . . . 5  |-  ( ph  ->  ( -u 1 ^ (ring 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) ) )  =  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) ) )
263262fveq2d 5802 . . . 4  |-  ( ph  ->  ( L `  ( -u 1 ^ (ring  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) ) )  =  ( L `
 ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) )
26495, 251, 2633eqtr3d 2503 . . 3  |-  ( ph  ->  ( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( L `  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) )
26574nnnn0d 10746 . . . 4  |-  ( ph  ->  P  e.  NN0 )
266 zexpcl 11996 . . . . 5  |-  ( ( Q  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  NN0 )  ->  ( Q ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
267225, 232, 266syl2anc 661 . . . 4  |-  ( ph  ->  ( Q ^ (
( P  -  1 )  /  2 ) )  e.  ZZ )
26819, 84fsumzcl 13329 . . . . 5  |-  ( ph  -> 
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) )  e.  ZZ )
269 m1expcl 12004 . . . . 5  |-  ( sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) )  e.  ZZ  ->  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) )  e.  ZZ )
270268, 269syl 16 . . . 4  |-  ( ph  ->  ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  e.  ZZ )
2718, 25zndvds 18106 . . . 4  |-  ( ( P  e.  NN0  /\  ( Q ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  /\  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  e.  ZZ )  ->  (
( L `  ( Q ^ ( ( P  -  1 )  / 
2 ) ) )  =  ( L `  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) )  <->  P  ||  ( ( Q ^ ( ( P  -  1 )  /  2 ) )  -  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) ) )
272265, 267, 270, 271syl3anc 1219 . . 3  |-  ( ph  ->  ( ( L `  ( Q ^ ( ( P  -  1 )  /  2 ) ) )  =  ( L `
 ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) )  <->  P  ||  (
( Q ^ (
( P  -  1 )  /  2 ) )  -  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) )
273264, 272mpbid 210 . 2  |-  ( ph  ->  P  ||  ( ( Q ^ ( ( P  -  1 )  /  2 ) )  -  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( |_ `  (
( Q  /  P
)  x.  ( 2  x.  x ) ) ) ) ) )
274 moddvds 13659 . . 3  |-  ( ( P  e.  NN  /\  ( Q ^ ( ( P  -  1 )  /  2 ) )  e.  ZZ  /\  ( -u 1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) )  e.  ZZ )  ->  (
( ( Q ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  mod  P )  <->  P  ||  (
( Q ^ (
( P  -  1 )  /  2 ) )  -  ( -u
1 ^ sum_ x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) ( |_ `  ( ( Q  /  P )  x.  (
2  x.  x ) ) ) ) ) ) )
27574, 267, 270, 274syl3anc 1219 . 2  |-  ( ph  ->  ( ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  mod 
P )  =  ( ( -u 1 ^
sum_ x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) ) ( |_ `  ( ( Q  /  P )  x.  ( 2  x.  x ) ) ) )  mod  P )  <-> 
P  ||  ( ( Q ^ ( ( P  -  1 )  / 
2 ) )  -  ( -u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) ) ) ) )
276273, 275mpbird 232 1  |-  ( ph  ->  ( ( Q ^
( ( P  - 
1 )  /  2
) )  mod  P
)  =  ( (
-u 1 ^ sum_ x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) ) ( |_
`  ( ( Q  /  P )  x.  ( 2  x.  x
) ) ) )  mod  P ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2647   _Vcvv 3076    \ cdif 3432    C_ wss 3435   {csn 3984   class class class wbr 4399    |-> cmpt 4457   ran crn 4948    o. ccom 4951   -->wf 5521   ` cfv 5525  (class class class)co 6199    oFcof 6427   Fincfn 7419   CCcc 9390   RRcr 9391   0cc0 9392   1c1 9393    + caddc 9395    x. cmul 9397    - cmin 9705   -ucneg 9706    / cdiv 10103   NNcn 10432   2c2 10481   NN0cn0 10689   ZZcz 10756   ZZ>=cuz 10971   RR+crp 11101   ...cfz 11553   |_cfl 11756    mod cmo 11824   ^cexp 11981   #chash 12219   sum_csu 13280    || cdivides 13652   Primecprime 13880   Basecbs 14291   ↾s cress 14292   .rcmulr 14357   0gc0g 14496    gsumg cgsu 14497   Mndcmnd 15527  .gcmg 15532   MndHom cmhm 15580  SubMndcsubmnd 15581  SubGrpcsubg 15793    GrpHom cghm 15862  CMndccmn 16397   Abelcabel 16398  mulGrpcmgp 16712   1rcur 16724   Ringcrg 16767   CRingccrg 16768   RingHom crh 16926   DivRingcdr 16954  Fieldcfield 16955  SubRingcsubrg 16983  ℂfldccnfld 17942  ℤringzring 18007   ZRHomczrh 18055  ℤ/nczn 18058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4510  ax-sep 4520  ax-nul 4528  ax-pow 4577  ax-pr 4638  ax-un 6481  ax-inf2 7957  ax-cnex 9448  ax-resscn 9449  ax-1cn 9450  ax-icn 9451  ax-addcl 9452  ax-addrcl 9453  ax-mulcl 9454  ax-mulrcl 9455  ax-mulcom 9456  ax-addass 9457  ax-mulass 9458  ax-distr 9459  ax-i2m1 9460  ax-1ne0 9461  ax-1rid 9462  ax-rnegex 9463  ax-rrecex 9464  ax-cnre 9465  ax-pre-lttri 9466  ax-pre-lttrn 9467  ax-pre-ltadd 9468  ax-pre-mulgt0 9469  ax-pre-sup 9470  ax-addf 9471  ax-mulf 9472
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-fal 1376  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2649  df-nel 2650  df-ral 2803  df-rex 2804  df-reu 2805  df-rmo 2806  df-rab 2807  df-v 3078  df-sbc 3293  df-csb 3395  df-dif 3438  df-un 3440  df-in 3442  df-ss 3449  df-pss 3451  df-nul 3745  df-if 3899  df-pw 3969  df-sn 3985  df-pr 3987  df-tp 3989  df-op 3991  df-uni 4199  df-int 4236  df-iun 4280  df-br 4400  df-opab 4458  df-mpt 4459  df-tr 4493  df-eprel 4739  df-id 4743  df-po 4748  df-so 4749  df-fr 4786  df-se 4787  df-we 4788  df-ord 4829  df-on 4830  df-lim 4831  df-suc 4832  df-xp 4953  df-rel 4954  df-cnv 4955  df-co 4956  df-dm 4957  df-rn 4958  df-res 4959  df-ima 4960  df-iota 5488  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-isom 5534  df-riota 6160  df-ov 6202  df-oprab 6203  df-mpt2 6204  df-of 6429  df-om 6586  df-1st 6686  df-2nd 6687  df-supp 6800  df-tpos 6854  df-recs 6941  df-rdg 6975  df-1o 7029  df-2o 7030  df-oadd 7033  df-er 7210  df-ec 7212  df-qs 7216  df-map 7325  df-en 7420  df-dom 7421  df-sdom 7422  df-fin 7423  df-fsupp 7731  df-sup 7801  df-oi 7834  df-card 8219  df-cda 8447  df-pnf 9530  df-mnf 9531  df-xr 9532  df-ltxr 9533  df-le 9534  df-sub 9707  df-neg 9708  df-div 10104  df-nn 10433  df-2 10490  df-3 10491  df-4 10492  df-5 10493  df-6 10494  df-7 10495  df-8 10496  df-9 10497  df-10 10498  df-n0 10690  df-z 10757  df-dec 10866  df-uz 10972  df-rp 11102  df-fz 11554  df-fzo 11665  df-fl 11758  df-mod 11825  df-seq 11923  df-exp 11982  df-hash 12220  df-cj 12705  df-re 12706  df-im 12707  df-sqr 12841  df-abs 12842  df-clim 13083  df-sum 13281  df-dvds 13653  df-gcd 13808  df-prm 13881  df-struct 14293  df-ndx 14294  df-slot 14295  df-base 14296  df-sets 14297  df-ress 14298  df-plusg 14369  df-mulr 14370  df-starv 14371  df-sca 14372  df-vsca 14373  df-ip 14374  df-tset 14375  df-ple 14376  df-ds 14378  df-unif 14379  df-0g 14498  df-gsum 14499  df-imas 14564  df-divs 14565  df-mnd 15533  df-mhm 15582  df-submnd 15583  df-grp 15663  df-minusg 15664  df-sbg 15665  df-mulg 15666  df-subg 15796  df-nsg 15797  df-eqg 15798  df-ghm 15863  df-cntz 15953  df-cmn 16399  df-abl 16400  df-mgp 16713  df-ur 16725  df-rng 16769  df-cring 16770  df-oppr 16837  df-dvdsr 16855  df-unit 16856  df-invr 16886  df-dvr 16897  df-rnghom 16928  df-drng 16956  df-field 16957  df-subrg 16985  df-lmod 17072  df-lss 17136  df-lsp 17175  df-sra 17375  df-rgmod 17376  df-lidl 17377  df-rsp 17378  df-2idl 17436  df-nzr 17462  df-rlreg 17476  df-domn 17477  df-idom 17478  df-cnfld 17943  df-zring 18008  df-zrh 18059  df-zn 18062
This theorem is referenced by:  lgseisen  22824
  Copyright terms: Public domain W3C validator