MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem3 Structured version   Unicode version

Theorem lgseisenlem3 24265
Description: Lemma for lgseisen 24267. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgseisen.4  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
lgseisen.5  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
lgseisen.6  |-  S  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
lgseisen.7  |-  Y  =  (ℤ/n `  P )
lgseisen.8  |-  G  =  (mulGrp `  Y )
lgseisen.9  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
lgseisenlem3  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  =  ( 1r `  Y
) )
Distinct variable groups:    x, G    x, L    x, y, P    ph, x, y    y, M   
x, Q, y    x, Y    x, S
Allowed substitution hints:    R( x, y)    S( y)    G( y)    L( y)    M( x)    Y( y)

Proof of Theorem lgseisenlem3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 oveq2 6309 . . . . . . . . 9  |-  ( k  =  x  ->  (
2  x.  k )  =  ( 2  x.  x ) )
21fveq2d 5881 . . . . . . . 8  |-  ( k  =  x  ->  ( L `  ( 2  x.  k ) )  =  ( L `  (
2  x.  x ) ) )
32cbvmptv 4513 . . . . . . 7  |-  ( k  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  k ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  x
) ) )
43oveq2i 6312 . . . . . 6  |-  ( G 
gsumg  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) ) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )
5 lgseisen.8 . . . . . . . 8  |-  G  =  (mulGrp `  Y )
6 eqid 2422 . . . . . . . 8  |-  ( Base `  Y )  =  (
Base `  Y )
75, 6mgpbas 17716 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  G )
8 eqid 2422 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
9 lgseisen.1 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
109eldifad 3448 . . . . . . . . . 10  |-  ( ph  ->  P  e.  Prime )
11 lgseisen.7 . . . . . . . . . . 11  |-  Y  =  (ℤ/n `  P )
1211znfld 19117 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  Y  e. Field
)
1310, 12syl 17 . . . . . . . . 9  |-  ( ph  ->  Y  e. Field )
14 isfld 17971 . . . . . . . . . 10  |-  ( Y  e. Field 
<->  ( Y  e.  DivRing  /\  Y  e.  CRing ) )
1514simprbi 465 . . . . . . . . 9  |-  ( Y  e. Field  ->  Y  e.  CRing )
1613, 15syl 17 . . . . . . . 8  |-  ( ph  ->  Y  e.  CRing )
175crngmgp 17775 . . . . . . . 8  |-  ( Y  e.  CRing  ->  G  e. CMnd )
1816, 17syl 17 . . . . . . 7  |-  ( ph  ->  G  e. CMnd )
19 fzfid 12185 . . . . . . 7  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin )
20 crngring 17778 . . . . . . . . . . . 12  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
2116, 20syl 17 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  Ring )
22 lgseisen.9 . . . . . . . . . . . 12  |-  L  =  ( ZRHom `  Y
)
2322zrhrhm 19069 . . . . . . . . . . 11  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
2421, 23syl 17 . . . . . . . . . 10  |-  ( ph  ->  L  e.  (ring RingHom  Y ) )
25 zringbas 19031 . . . . . . . . . . 11  |-  ZZ  =  ( Base ` ring )
2625, 6rhmf 17941 . . . . . . . . . 10  |-  ( L  e.  (ring RingHom  Y )  ->  L : ZZ --> ( Base `  Y
) )
2724, 26syl 17 . . . . . . . . 9  |-  ( ph  ->  L : ZZ --> ( Base `  Y ) )
28 2z 10969 . . . . . . . . . 10  |-  2  e.  ZZ
29 elfzelz 11800 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  k  e.  ZZ )
30 zmulcl 10985 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  k  e.  ZZ )  ->  ( 2  x.  k
)  e.  ZZ )
3128, 29, 30sylancr 667 . . . . . . . . 9  |-  ( k  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  (
2  x.  k )  e.  ZZ )
32 ffvelrn 6031 . . . . . . . . 9  |-  ( ( L : ZZ --> ( Base `  Y )  /\  (
2  x.  k )  e.  ZZ )  -> 
( L `  (
2  x.  k ) )  e.  ( Base `  Y ) )
3327, 31, 32syl2an 479 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  k ) )  e.  ( Base `  Y
) )
34 eqid 2422 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  k ) ) )  =  ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )
3533, 34fmptd 6057 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> ( Base `  Y
) )
36 fvex 5887 . . . . . . . . 9  |-  ( L `
 ( 2  x.  k ) )  e. 
_V
3736a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  k ) )  e. 
_V )
38 fvex 5887 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
3938a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
4034, 19, 37, 39fsuppmptdm 7896 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) ) finSupp  ( 0g
`  G ) )
41 lgseisen.2 . . . . . . . 8  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
42 lgseisen.3 . . . . . . . 8  |-  ( ph  ->  P  =/=  Q )
43 lgseisen.4 . . . . . . . 8  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
44 lgseisen.5 . . . . . . . 8  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
45 lgseisen.6 . . . . . . . 8  |-  S  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
469, 41, 42, 43, 44, 45lgseisenlem2 24264 . . . . . . 7  |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-onto-> ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
477, 8, 18, 19, 35, 40, 46gsumf1o 17537 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) ) )  =  ( G  gsumg  ( ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )  o.  M ) ) )
484, 47syl5eqr 2477 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  =  ( G  gsumg  ( ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )  o.  M ) ) )
499, 41, 42, 43, 44lgseisenlem1 24263 . . . . . . . 8  |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  / 
2 ) ) --> ( 1 ... ( ( P  -  1 )  /  2 ) ) )
5044fmpt 6054 . . . . . . . 8  |-  ( A. x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  <->  M :
( 1 ... (
( P  -  1 )  /  2 ) ) --> ( 1 ... ( ( P  - 
1 )  /  2
) ) )
5149, 50sylibr 215 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) )
5244a1i 11 . . . . . . 7  |-  ( ph  ->  M  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) )
53 eqidd 2423 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) )  =  ( k  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  k ) ) ) )
54 oveq2 6309 . . . . . . . 8  |-  ( k  =  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  -> 
( 2  x.  k
)  =  ( 2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) )
5554fveq2d 5881 . . . . . . 7  |-  ( k  =  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  -> 
( L `  (
2  x.  k ) )  =  ( L `
 ( 2  x.  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) ) ) )
5651, 52, 53, 55fmptcof 6068 . . . . . 6  |-  ( ph  ->  ( ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )  o.  M )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) ) )
5756oveq2d 6317 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )  o.  M ) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) ) ) )
5841eldifad 3448 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  Q  e.  Prime )
5958adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  Prime )
60 prmz 14613 . . . . . . . . . . . . . . . . . . . 20  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
6159, 60syl 17 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  ZZ )
62 2nn 10767 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  NN
63 elfznn 11828 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  NN )
6463adantl 467 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  NN )
65 nnmulcl 10632 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  NN  /\  x  e.  NN )  ->  ( 2  x.  x
)  e.  NN )
6662, 64, 65sylancr 667 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  NN )
6766nnzd 11039 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ZZ )
6861, 67zmulcld 11046 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  ZZ )
6910adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  Prime )
70 prmnn 14612 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  Prime  ->  P  e.  NN )
7169, 70syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN )
7268, 71zmodcld 12116 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  e.  NN0 )
7343, 72syl5eqel 2514 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  NN0 )
7473nn0zd 11038 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ZZ )
75 m1expcl 12294 . . . . . . . . . . . . . . 15  |-  ( R  e.  ZZ  ->  ( -u 1 ^ R )  e.  ZZ )
7674, 75syl 17 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  ZZ )
7776, 74zmulcld 11046 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  R )  e.  ZZ )
7877, 71zmodcld 12116 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN0 )
7978nn0cnd 10927 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  CC )
80 2cnd 10682 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  CC )
81 2ne0 10702 . . . . . . . . . . . 12  |-  2  =/=  0
8281a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  =/=  0 )
8379, 80, 82divcan2d 10385 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) )  =  ( ( (
-u 1 ^ R
)  x.  R )  mod  P ) )
8483fveq2d 5881 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) ) )  =  ( L `  ( ( ( -u
1 ^ R )  x.  R )  mod 
P ) ) )
8571nnrpd 11339 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  RR+ )
86 eqidd 2423 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  mod  P )  =  ( ( -u
1 ^ R )  mod  P ) )
8743oveq1i 6311 . . . . . . . . . . . . . 14  |-  ( R  mod  P )  =  ( ( ( Q  x.  ( 2  x.  x ) )  mod 
P )  mod  P
)
8868zred 11040 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  RR )
89 modabs2 12130 . . . . . . . . . . . . . . 15  |-  ( ( ( Q  x.  (
2  x.  x ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( Q  x.  ( 2  x.  x ) )  mod 
P )  mod  P
)  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P ) )
9088, 85, 89syl2anc 665 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( Q  x.  ( 2  x.  x
) )  mod  P
)  mod  P )  =  ( ( Q  x.  ( 2  x.  x ) )  mod 
P ) )
9187, 90syl5eq 2475 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  mod  P )  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
) )
9276, 76, 74, 68, 85, 86, 91modmul12d 12143 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  =  ( ( (
-u 1 ^ R
)  x.  ( Q  x.  ( 2  x.  x ) ) )  mod  P ) )
9377zred 11040 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  R )  e.  RR )
94 modabs2 12130 . . . . . . . . . . . . 13  |-  ( ( ( ( -u 1 ^ R )  x.  R
)  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  mod 
P )  =  ( ( ( -u 1 ^ R )  x.  R
)  mod  P )
)
9593, 85, 94syl2anc 665 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  mod  P
)  =  ( ( ( -u 1 ^ R )  x.  R
)  mod  P )
)
9676zcnd 11041 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  CC )
9761zcnd 11041 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  CC )
9867zcnd 11041 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  CC )
9996, 97, 98mulassd 9666 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  Q
)  x.  ( 2  x.  x ) )  =  ( ( -u
1 ^ R )  x.  ( Q  x.  ( 2  x.  x
) ) ) )
10099oveq1d 6316 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  mod  P
)  =  ( ( ( -u 1 ^ R )  x.  ( Q  x.  ( 2  x.  x ) ) )  mod  P ) )
10192, 95, 1003eqtr4d 2473 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  mod  P
)  =  ( ( ( ( -u 1 ^ R )  x.  Q
)  x.  ( 2  x.  x ) )  mod  P ) )
10210, 70syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  NN )
103102adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN )
10478nn0zd 11038 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  ZZ )
10576, 61zmulcld 11046 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  Q )  e.  ZZ )
106105, 67zmulcld 11046 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  Q
)  x.  ( 2  x.  x ) )  e.  ZZ )
107 moddvds 14299 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  ZZ  /\  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  e.  ZZ )  ->  ( ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  mod  P )  =  ( ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  mod  P
)  <->  P  ||  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  -  ( ( (
-u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) ) ) )
108103, 104, 106, 107syl3anc 1264 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  mod 
P )  =  ( ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  mod  P
)  <->  P  ||  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  -  ( ( (
-u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) ) ) )
109101, 108mpbid 213 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  ||  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  -  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) ) ) )
11071nnnn0d 10925 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN0 )
11111, 22zndvds 19106 . . . . . . . . . . 11  |-  ( ( P  e.  NN0  /\  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  ZZ  /\  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  e.  ZZ )  ->  ( ( L `
 ( ( (
-u 1 ^ R
)  x.  R )  mod  P ) )  =  ( L `  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) ) )  <->  P  ||  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  -  (
( ( -u 1 ^ R )  x.  Q
)  x.  ( 2  x.  x ) ) ) ) )
112110, 104, 106, 111syl3anc 1264 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  (
( ( -u 1 ^ R )  x.  R
)  mod  P )
)  =  ( L `
 ( ( (
-u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) )  <-> 
P  ||  ( (
( ( -u 1 ^ R )  x.  R
)  mod  P )  -  ( ( (
-u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) ) ) )
113109, 112mpbird 235 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( (
( -u 1 ^ R
)  x.  R )  mod  P ) )  =  ( L `  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) ) ) )
11424adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  L  e.  (ring RingHom  Y ) )
115 zringmulr 19034 . . . . . . . . . . 11  |-  x.  =  ( .r ` ring )
116 eqid 2422 . . . . . . . . . . 11  |-  ( .r
`  Y )  =  ( .r `  Y
)
11725, 115, 116rhmmul 17942 . . . . . . . . . 10  |-  ( ( L  e.  (ring RingHom  Y )  /\  ( ( -u 1 ^ R )  x.  Q
)  e.  ZZ  /\  ( 2  x.  x
)  e.  ZZ )  ->  ( L `  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) ) )  =  ( ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ( .r
`  Y ) ( L `  ( 2  x.  x ) ) ) )
118114, 105, 67, 117syl3anc 1264 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( (
( -u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) )  =  ( ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ( .r `  Y
) ( L `  ( 2  x.  x
) ) ) )
11984, 113, 1183eqtrd 2467 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) ) )  =  ( ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ( .r `  Y
) ( L `  ( 2  x.  x
) ) ) )
120119mpteq2dva 4507 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ( .r `  Y ) ( L `
 ( 2  x.  x ) ) ) ) )
12127adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  L : ZZ --> ( Base `  Y
) )
122121, 105ffvelrnd 6034 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ R )  x.  Q ) )  e.  ( Base `  Y
) )
123121, 67ffvelrnd 6034 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  x ) )  e.  ( Base `  Y
) )
124 eqidd 2423 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ) )
125 eqidd 2423 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  x ) ) ) )
12619, 122, 123, 124, 125offval2 6558 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) )  oF ( .r `  Y ) ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ( .r `  Y ) ( L `
 ( 2  x.  x ) ) ) ) )
127120, 126eqtr4d 2466 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) )  =  ( ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  x
) ) ) ) )
128127oveq2d 6317 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) ) )  =  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) )  oF ( .r `  Y ) ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) ) )
12948, 57, 1283eqtrd 2467 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  =  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) )  oF ( .r `  Y ) ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) ) )
1305, 116mgpplusg 17714 . . . . 5  |-  ( .r
`  Y )  =  ( +g  `  G
)
131 eqid 2422 . . . . 5  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )
132 eqid 2422 . . . . 5  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  x
) ) )
1337, 130, 18, 19, 122, 123, 131, 132gsummptfidmadd2 17546 . . . 4  |-  ( ph  ->  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) )  oF ( .r `  Y ) ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) )  =  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) )
134129, 133eqtrd 2463 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  =  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) ) ( .r
`  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) )
135134oveq1d 6316 . 2  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) )  =  ( ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) )
136 eqid 2422 . . . . . 6  |-  (Unit `  Y )  =  (Unit `  Y )
137136, 5unitsubm 17885 . . . . 5  |-  ( Y  e.  Ring  ->  (Unit `  Y )  e.  (SubMnd `  G ) )
13821, 137syl 17 . . . 4  |-  ( ph  ->  (Unit `  Y )  e.  (SubMnd `  G )
)
139 elfzle2 11803 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  <_  ( ( P  - 
1 )  /  2
) )
140139adantl 467 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  <_  ( ( P  - 
1 )  /  2
) )
14164nnred 10624 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  RR )
142 prmuz2 14629 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
143 uz2m1nn 11233 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
14469, 142, 1433syl 18 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  NN )
145144nnred 10624 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  RR )
146 2re 10679 . . . . . . . . . . . 12  |-  2  e.  RR
147146a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  RR )
148 2pos 10701 . . . . . . . . . . . 12  |-  0  <  2
149148a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <  2 )
150 lemuldiv2 10487 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  ( P  -  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  x )  <_  ( P  - 
1 )  <->  x  <_  ( ( P  -  1 )  /  2 ) ) )
151141, 145, 147, 149, 150syl112anc 1268 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 2  x.  x
)  <_  ( P  -  1 )  <->  x  <_  ( ( P  -  1 )  /  2 ) ) )
152140, 151mpbird 235 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  <_  ( P  - 
1 ) )
153 prmz 14613 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ZZ )
15469, 153syl 17 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  ZZ )
155 peano2zm 10980 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
156154, 155syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  ZZ )
157 fznn 11863 . . . . . . . . . 10  |-  ( ( P  -  1 )  e.  ZZ  ->  (
( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) )  <->  ( (
2  x.  x )  e.  NN  /\  (
2  x.  x )  <_  ( P  - 
1 ) ) ) )
158156, 157syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) )  <->  ( (
2  x.  x )  e.  NN  /\  (
2  x.  x )  <_  ( P  - 
1 ) ) ) )
15966, 152, 158mpbir2and 930 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ( 1 ... ( P  -  1 ) ) )
160 fzm1ndvds 14344 . . . . . . . 8  |-  ( ( P  e.  NN  /\  ( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  (
2  x.  x ) )
16171, 159, 160syl2anc 665 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( 2  x.  x ) )
162 eqid 2422 . . . . . . . . . 10  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
16311, 22, 162zndvds0 19107 . . . . . . . . 9  |-  ( ( P  e.  NN0  /\  ( 2  x.  x
)  e.  ZZ )  ->  ( ( L `
 ( 2  x.  x ) )  =  ( 0g `  Y
)  <->  P  ||  ( 2  x.  x ) ) )
164110, 67, 163syl2anc 665 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  (
2  x.  x ) )  =  ( 0g
`  Y )  <->  P  ||  (
2  x.  x ) ) )
165164necon3abid 2670 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  (
2  x.  x ) )  =/=  ( 0g
`  Y )  <->  -.  P  ||  ( 2  x.  x
) ) )
166161, 165mpbird 235 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  x ) )  =/=  ( 0g `  Y
) )
16714simplbi 461 . . . . . . . . 9  |-  ( Y  e. Field  ->  Y  e.  DivRing )
16813, 167syl 17 . . . . . . . 8  |-  ( ph  ->  Y  e.  DivRing )
169168adantr 466 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Y  e.  DivRing )
1706, 136, 162drngunit 17967 . . . . . . 7  |-  ( Y  e.  DivRing  ->  ( ( L `
 ( 2  x.  x ) )  e.  (Unit `  Y )  <->  ( ( L `  (
2  x.  x ) )  e.  ( Base `  Y )  /\  ( L `  ( 2  x.  x ) )  =/=  ( 0g `  Y
) ) ) )
171169, 170syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  (
2  x.  x ) )  e.  (Unit `  Y )  <->  ( ( L `  ( 2  x.  x ) )  e.  ( Base `  Y
)  /\  ( L `  ( 2  x.  x
) )  =/=  ( 0g `  Y ) ) ) )
172123, 166, 171mpbir2and 930 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  x ) )  e.  (Unit `  Y )
)
173172, 132fmptd 6057 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> (Unit `  Y )
)
174 fvex 5887 . . . . . 6  |-  ( L `
 ( 2  x.  x ) )  e. 
_V
175174a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  x ) )  e. 
_V )
176132, 19, 175, 39fsuppmptdm 7896 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) finSupp  ( 0g
`  G ) )
1778, 18, 19, 138, 173, 176gsumsubmcl 17539 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  e.  (Unit `  Y )
)
178 eqid 2422 . . . 4  |-  (/r `  Y
)  =  (/r `  Y
)
179 eqid 2422 . . . 4  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
180136, 178, 179dvrid 17903 . . 3  |-  ( ( Y  e.  Ring  /\  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  e.  (Unit `  Y )
)  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) (/r `  Y ) ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  x ) ) ) ) )  =  ( 1r `  Y
) )
18121, 177, 180syl2anc 665 . 2  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) )  =  ( 1r `  Y ) )
182122, 131fmptd 6057 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> ( Base `  Y
) )
183 fvex 5887 . . . . . 6  |-  ( L `
 ( ( -u
1 ^ R )  x.  Q ) )  e.  _V
184183a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ R )  x.  Q ) )  e.  _V )
185131, 19, 184, 39fsuppmptdm 7896 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) finSupp  ( 0g
`  G ) )
1867, 8, 18, 19, 182, 185gsumcl 17536 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  e.  ( Base `  Y
) )
1876, 136, 178, 116dvrcan3 17907 . . 3  |-  ( ( Y  e.  Ring  /\  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  e.  ( Base `  Y
)  /\  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  x ) ) ) )  e.  (Unit `  Y ) )  -> 
( ( ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) ) )
18821, 186, 177, 187syl3anc 1264 . 2  |-  ( ph  ->  ( ( ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) ) )
189135, 181, 1883eqtr3rd 2472 1  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  =  ( 1r `  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868    =/= wne 2618   A.wral 2775   _Vcvv 3081    \ cdif 3433   {csn 3996   class class class wbr 4420    |-> cmpt 4479    o. ccom 4853   -->wf 5593   ` cfv 5597  (class class class)co 6301    oFcof 6539   Fincfn 7573   RRcr 9538   0cc0 9539   1c1 9540    x. cmul 9544    < clt 9675    <_ cle 9676    - cmin 9860   -ucneg 9861    / cdiv 10269   NNcn 10609   2c2 10659   NN0cn0 10869   ZZcz 10937   ZZ>=cuz 11159   RR+crp 11302   ...cfz 11784    mod cmo 12095   ^cexp 12271    || cdvds 14292   Primecprime 14609   Basecbs 15108   .rcmulr 15178   0gc0g 15325    gsumg cgsu 15326  SubMndcsubmnd 16568  CMndccmn 17417  mulGrpcmgp 17710   1rcur 17722   Ringcrg 17767   CRingccrg 17768  Unitcui 17854  /rcdvr 17897   RingHom crh 17927   DivRingcdr 17962  Fieldcfield 17963  ℤringzring 19025   ZRHomczrh 19057  ℤ/nczn 19060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-inf2 8148  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-of 6541  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-tpos 6977  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-2o 7187  df-oadd 7190  df-er 7367  df-ec 7369  df-qs 7373  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-sup 7958  df-inf 7959  df-oi 8027  df-card 8374  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-rp 11303  df-fz 11785  df-fzo 11916  df-fl 12027  df-mod 12096  df-seq 12213  df-exp 12272  df-hash 12515  df-cj 13150  df-re 13151  df-im 13152  df-sqrt 13286  df-abs 13287  df-dvds 14293  df-gcd 14456  df-prm 14610  df-struct 15110  df-ndx 15111  df-slot 15112  df-base 15113  df-sets 15114  df-ress 15115  df-plusg 15190  df-mulr 15191  df-starv 15192  df-sca 15193  df-vsca 15194  df-ip 15195  df-tset 15196  df-ple 15197  df-ds 15199  df-unif 15200  df-0g 15327  df-gsum 15328  df-imas 15394  df-qus 15396  df-mgm 16475  df-sgrp 16514  df-mnd 16524  df-mhm 16569  df-submnd 16570  df-grp 16660  df-minusg 16661  df-sbg 16662  df-mulg 16663  df-subg 16801  df-nsg 16802  df-eqg 16803  df-ghm 16868  df-cntz 16958  df-cmn 17419  df-abl 17420  df-mgp 17711  df-ur 17723  df-ring 17769  df-cring 17770  df-oppr 17838  df-dvdsr 17856  df-unit 17857  df-invr 17887  df-dvr 17898  df-rnghom 17930  df-drng 17964  df-field 17965  df-subrg 17993  df-lmod 18080  df-lss 18143  df-lsp 18182  df-sra 18382  df-rgmod 18383  df-lidl 18384  df-rsp 18385  df-2idl 18443  df-nzr 18469  df-rlreg 18494  df-domn 18495  df-idom 18496  df-cnfld 18958  df-zring 19026  df-zrh 19061  df-zn 19064
This theorem is referenced by:  lgseisenlem4  24266
  Copyright terms: Public domain W3C validator