MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem3 Structured version   Unicode version

Theorem lgseisenlem3 23351
Description: Lemma for lgseisen 23353. (Contributed by Mario Carneiro, 17-Jun-2015.) (Proof shortened by AV, 28-Jul-2019.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgseisen.4  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
lgseisen.5  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
lgseisen.6  |-  S  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
lgseisen.7  |-  Y  =  (ℤ/n `  P )
lgseisen.8  |-  G  =  (mulGrp `  Y )
lgseisen.9  |-  L  =  ( ZRHom `  Y
)
Assertion
Ref Expression
lgseisenlem3  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  =  ( 1r `  Y
) )
Distinct variable groups:    x, G    x, L    x, y, P    ph, x, y    y, M   
x, Q, y    x, Y    x, S
Allowed substitution hints:    R( x, y)    S( y)    G( y)    L( y)    M( x)    Y( y)

Proof of Theorem lgseisenlem3
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 oveq2 6290 . . . . . . . . 9  |-  ( k  =  x  ->  (
2  x.  k )  =  ( 2  x.  x ) )
21fveq2d 5868 . . . . . . . 8  |-  ( k  =  x  ->  ( L `  ( 2  x.  k ) )  =  ( L `  (
2  x.  x ) ) )
32cbvmptv 4538 . . . . . . 7  |-  ( k  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  k ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  x
) ) )
43oveq2i 6293 . . . . . 6  |-  ( G 
gsumg  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) ) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )
5 lgseisen.8 . . . . . . . 8  |-  G  =  (mulGrp `  Y )
6 eqid 2467 . . . . . . . 8  |-  ( Base `  Y )  =  (
Base `  Y )
75, 6mgpbas 16934 . . . . . . 7  |-  ( Base `  Y )  =  (
Base `  G )
8 eqid 2467 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
9 lgseisen.1 . . . . . . . . . . 11  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
109eldifad 3488 . . . . . . . . . 10  |-  ( ph  ->  P  e.  Prime )
11 lgseisen.7 . . . . . . . . . . 11  |-  Y  =  (ℤ/n `  P )
1211znfld 18363 . . . . . . . . . 10  |-  ( P  e.  Prime  ->  Y  e. Field
)
1310, 12syl 16 . . . . . . . . 9  |-  ( ph  ->  Y  e. Field )
14 isfld 17185 . . . . . . . . . 10  |-  ( Y  e. Field 
<->  ( Y  e.  DivRing  /\  Y  e.  CRing ) )
1514simprbi 464 . . . . . . . . 9  |-  ( Y  e. Field  ->  Y  e.  CRing )
1613, 15syl 16 . . . . . . . 8  |-  ( ph  ->  Y  e.  CRing )
175crngmgp 16991 . . . . . . . 8  |-  ( Y  e.  CRing  ->  G  e. CMnd )
1816, 17syl 16 . . . . . . 7  |-  ( ph  ->  G  e. CMnd )
19 fzfid 12046 . . . . . . 7  |-  ( ph  ->  ( 1 ... (
( P  -  1 )  /  2 ) )  e.  Fin )
20 crngrng 16993 . . . . . . . . . . . 12  |-  ( Y  e.  CRing  ->  Y  e.  Ring )
2116, 20syl 16 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  Ring )
22 lgseisen.9 . . . . . . . . . . . 12  |-  L  =  ( ZRHom `  Y
)
2322zrhrhm 18313 . . . . . . . . . . 11  |-  ( Y  e.  Ring  ->  L  e.  (ring RingHom  Y ) )
2421, 23syl 16 . . . . . . . . . 10  |-  ( ph  ->  L  e.  (ring RingHom  Y ) )
25 zringbas 18259 . . . . . . . . . . 11  |-  ZZ  =  ( Base ` ring )
2625, 6rhmf 17156 . . . . . . . . . 10  |-  ( L  e.  (ring RingHom  Y )  ->  L : ZZ --> ( Base `  Y
) )
2724, 26syl 16 . . . . . . . . 9  |-  ( ph  ->  L : ZZ --> ( Base `  Y ) )
28 2z 10892 . . . . . . . . . 10  |-  2  e.  ZZ
29 elfzelz 11684 . . . . . . . . . 10  |-  ( k  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  k  e.  ZZ )
30 zmulcl 10907 . . . . . . . . . 10  |-  ( ( 2  e.  ZZ  /\  k  e.  ZZ )  ->  ( 2  x.  k
)  e.  ZZ )
3128, 29, 30sylancr 663 . . . . . . . . 9  |-  ( k  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  (
2  x.  k )  e.  ZZ )
32 ffvelrn 6017 . . . . . . . . 9  |-  ( ( L : ZZ --> ( Base `  Y )  /\  (
2  x.  k )  e.  ZZ )  -> 
( L `  (
2  x.  k ) )  e.  ( Base `  Y ) )
3327, 31, 32syl2an 477 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  k ) )  e.  ( Base `  Y
) )
34 eqid 2467 . . . . . . . 8  |-  ( k  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  k ) ) )  =  ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )
3533, 34fmptd 6043 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> ( Base `  Y
) )
36 fvex 5874 . . . . . . . . 9  |-  ( L `
 ( 2  x.  k ) )  e. 
_V
3736a1i 11 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  k ) )  e. 
_V )
38 fvex 5874 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
3938a1i 11 . . . . . . . 8  |-  ( ph  ->  ( 0g `  G
)  e.  _V )
4034, 19, 37, 39fsuppmptdm 7836 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) ) finSupp  ( 0g
`  G ) )
41 lgseisen.2 . . . . . . . 8  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
42 lgseisen.3 . . . . . . . 8  |-  ( ph  ->  P  =/=  Q )
43 lgseisen.4 . . . . . . . 8  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
44 lgseisen.5 . . . . . . . 8  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
45 lgseisen.6 . . . . . . . 8  |-  S  =  ( ( Q  x.  ( 2  x.  y
) )  mod  P
)
469, 41, 42, 43, 44, 45lgseisenlem2 23350 . . . . . . 7  |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  / 
2 ) ) -1-1-onto-> ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
477, 8, 18, 19, 35, 40, 46gsumf1o 16712 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) ) )  =  ( G  gsumg  ( ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )  o.  M ) ) )
484, 47syl5eqr 2522 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  =  ( G  gsumg  ( ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )  o.  M ) ) )
499, 41, 42, 43, 44lgseisenlem1 23349 . . . . . . . 8  |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  / 
2 ) ) --> ( 1 ... ( ( P  -  1 )  /  2 ) ) )
5044fmpt 6040 . . . . . . . 8  |-  ( A. x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) ( ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  <->  M :
( 1 ... (
( P  -  1 )  /  2 ) ) --> ( 1 ... ( ( P  - 
1 )  /  2
) ) )
5149, 50sylibr 212 . . . . . . 7  |-  ( ph  ->  A. x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) )
5244a1i 11 . . . . . . 7  |-  ( ph  ->  M  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) )
53 eqidd 2468 . . . . . . 7  |-  ( ph  ->  ( k  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  k ) ) )  =  ( k  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  k ) ) ) )
54 oveq2 6290 . . . . . . . 8  |-  ( k  =  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  -> 
( 2  x.  k
)  =  ( 2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) )
5554fveq2d 5868 . . . . . . 7  |-  ( k  =  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  -> 
( L `  (
2  x.  k ) )  =  ( L `
 ( 2  x.  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) ) ) )
5651, 52, 53, 55fmptcof 6053 . . . . . 6  |-  ( ph  ->  ( ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )  o.  M )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) ) )
5756oveq2d 6298 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( ( k  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  k
) ) )  o.  M ) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) ) ) )
5841eldifad 3488 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  Q  e.  Prime )
5958adantr 465 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  Prime )
60 prmz 14073 . . . . . . . . . . . . . . . . . . . 20  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
6159, 60syl 16 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  ZZ )
62 2nn 10689 . . . . . . . . . . . . . . . . . . . . 21  |-  2  e.  NN
63 elfznn 11710 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  NN )
6463adantl 466 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  NN )
65 nnmulcl 10555 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( 2  e.  NN  /\  x  e.  NN )  ->  ( 2  x.  x
)  e.  NN )
6662, 64, 65sylancr 663 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  NN )
6766nnzd 10961 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ZZ )
6861, 67zmulcld 10968 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  ZZ )
6910adantr 465 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  Prime )
70 prmnn 14072 . . . . . . . . . . . . . . . . . . 19  |-  ( P  e.  Prime  ->  P  e.  NN )
7169, 70syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN )
7268, 71zmodcld 11979 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  e.  NN0 )
7343, 72syl5eqel 2559 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  NN0 )
7473nn0zd 10960 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ZZ )
75 m1expcl 12152 . . . . . . . . . . . . . . 15  |-  ( R  e.  ZZ  ->  ( -u 1 ^ R )  e.  ZZ )
7674, 75syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  ZZ )
7776, 74zmulcld 10968 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  R )  e.  ZZ )
7877, 71zmodcld 11979 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN0 )
7978nn0cnd 10850 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  CC )
80 2cnd 10604 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  CC )
81 2ne0 10624 . . . . . . . . . . . 12  |-  2  =/=  0
8281a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  =/=  0 )
8379, 80, 82divcan2d 10318 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) )  =  ( ( (
-u 1 ^ R
)  x.  R )  mod  P ) )
8483fveq2d 5868 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) ) )  =  ( L `  ( ( ( -u
1 ^ R )  x.  R )  mod 
P ) ) )
8571nnrpd 11251 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  RR+ )
86 eqidd 2468 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  mod  P )  =  ( ( -u
1 ^ R )  mod  P ) )
8743oveq1i 6292 . . . . . . . . . . . . . 14  |-  ( R  mod  P )  =  ( ( ( Q  x.  ( 2  x.  x ) )  mod 
P )  mod  P
)
8868zred 10962 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  RR )
89 modabs2 11993 . . . . . . . . . . . . . . 15  |-  ( ( ( Q  x.  (
2  x.  x ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( Q  x.  ( 2  x.  x ) )  mod 
P )  mod  P
)  =  ( ( Q  x.  ( 2  x.  x ) )  mod  P ) )
9088, 85, 89syl2anc 661 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( Q  x.  ( 2  x.  x
) )  mod  P
)  mod  P )  =  ( ( Q  x.  ( 2  x.  x ) )  mod 
P ) )
9187, 90syl5eq 2520 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  mod  P )  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
) )
9276, 76, 74, 68, 85, 86, 91modmul12d 12004 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  =  ( ( (
-u 1 ^ R
)  x.  ( Q  x.  ( 2  x.  x ) ) )  mod  P ) )
9377zred 10962 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  R )  e.  RR )
94 modabs2 11993 . . . . . . . . . . . . 13  |-  ( ( ( ( -u 1 ^ R )  x.  R
)  e.  RR  /\  P  e.  RR+ )  -> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  mod 
P )  =  ( ( ( -u 1 ^ R )  x.  R
)  mod  P )
)
9593, 85, 94syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  mod  P
)  =  ( ( ( -u 1 ^ R )  x.  R
)  mod  P )
)
9676zcnd 10963 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  CC )
9761zcnd 10963 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  CC )
9867zcnd 10963 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  CC )
9996, 97, 98mulassd 9615 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  Q
)  x.  ( 2  x.  x ) )  =  ( ( -u
1 ^ R )  x.  ( Q  x.  ( 2  x.  x
) ) ) )
10099oveq1d 6297 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  mod  P
)  =  ( ( ( -u 1 ^ R )  x.  ( Q  x.  ( 2  x.  x ) ) )  mod  P ) )
10192, 95, 1003eqtr4d 2518 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  mod  P
)  =  ( ( ( ( -u 1 ^ R )  x.  Q
)  x.  ( 2  x.  x ) )  mod  P ) )
10210, 70syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  P  e.  NN )
103102adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN )
10478nn0zd 10960 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  ZZ )
10576, 61zmulcld 10968 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  Q )  e.  ZZ )
106105, 67zmulcld 10968 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  Q
)  x.  ( 2  x.  x ) )  e.  ZZ )
107 moddvds 13847 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  ZZ  /\  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  e.  ZZ )  ->  ( ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  mod  P )  =  ( ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  mod  P
)  <->  P  ||  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  -  ( ( (
-u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) ) ) )
108103, 104, 106, 107syl3anc 1228 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  mod 
P )  =  ( ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  mod  P
)  <->  P  ||  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  -  ( ( (
-u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) ) ) )
109101, 108mpbid 210 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  ||  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  -  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) ) ) )
11071nnnn0d 10848 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN0 )
11111, 22zndvds 18352 . . . . . . . . . . 11  |-  ( ( P  e.  NN0  /\  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  ZZ  /\  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) )  e.  ZZ )  ->  ( ( L `
 ( ( (
-u 1 ^ R
)  x.  R )  mod  P ) )  =  ( L `  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) ) )  <->  P  ||  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  -  (
( ( -u 1 ^ R )  x.  Q
)  x.  ( 2  x.  x ) ) ) ) )
112110, 104, 106, 111syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  (
( ( -u 1 ^ R )  x.  R
)  mod  P )
)  =  ( L `
 ( ( (
-u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) )  <-> 
P  ||  ( (
( ( -u 1 ^ R )  x.  R
)  mod  P )  -  ( ( (
-u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) ) ) )
113109, 112mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( (
( -u 1 ^ R
)  x.  R )  mod  P ) )  =  ( L `  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) ) ) )
11424adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  L  e.  (ring RingHom  Y ) )
115 zringmulr 18262 . . . . . . . . . . 11  |-  x.  =  ( .r ` ring )
116 eqid 2467 . . . . . . . . . . 11  |-  ( .r
`  Y )  =  ( .r `  Y
)
11725, 115, 116rhmmul 17157 . . . . . . . . . 10  |-  ( ( L  e.  (ring RingHom  Y )  /\  ( ( -u 1 ^ R )  x.  Q
)  e.  ZZ  /\  ( 2  x.  x
)  e.  ZZ )  ->  ( L `  ( ( ( -u
1 ^ R )  x.  Q )  x.  ( 2  x.  x
) ) )  =  ( ( L `  ( ( -u 1 ^ R )  x.  Q
) ) ( .r
`  Y ) ( L `  ( 2  x.  x ) ) ) )
118114, 105, 67, 117syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( (
( -u 1 ^ R
)  x.  Q )  x.  ( 2  x.  x ) ) )  =  ( ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ( .r `  Y
) ( L `  ( 2  x.  x
) ) ) )
11984, 113, 1183eqtrd 2512 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) ) )  =  ( ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ( .r `  Y
) ( L `  ( 2  x.  x
) ) ) )
120119mpteq2dva 4533 . . . . . . 7  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ( .r `  Y ) ( L `
 ( 2  x.  x ) ) ) ) )
12127adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  L : ZZ --> ( Base `  Y
) )
122121, 105ffvelrnd 6020 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ R )  x.  Q ) )  e.  ( Base `  Y
) )
123121, 67ffvelrnd 6020 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  x ) )  e.  ( Base `  Y
) )
124 eqidd 2468 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ) )
125 eqidd 2468 . . . . . . . 8  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) )  =  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  x ) ) ) )
12619, 122, 123, 124, 125offval2 6538 . . . . . . 7  |-  ( ph  ->  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) )  oF ( .r `  Y ) ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ( .r `  Y ) ( L `
 ( 2  x.  x ) ) ) ) )
127120, 126eqtr4d 2511 . . . . . 6  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) )  =  ( ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) )  oF ( .r `  Y
) ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  x
) ) ) ) )
128127oveq2d 6298 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) ) ) )  =  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) )  oF ( .r `  Y ) ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) ) )
12948, 57, 1283eqtrd 2512 . . . 4  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  =  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) )  oF ( .r `  Y ) ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) ) )
1305, 116mgpplusg 16932 . . . . 5  |-  ( .r
`  Y )  =  ( +g  `  G
)
131 eqid 2467 . . . . 5  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )  =  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) )
132 eqid 2467 . . . . 5  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) )  =  ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( 2  x.  x
) ) )
1337, 130, 18, 19, 122, 123, 131, 132gsummptfidmadd2 16731 . . . 4  |-  ( ph  ->  ( G  gsumg  ( ( x  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  |->  ( L `  ( ( -u 1 ^ R )  x.  Q
) ) )  oF ( .r `  Y ) ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) )  =  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) )
134129, 133eqtrd 2508 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  =  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) ) ( .r
`  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) )
135134oveq1d 6297 . 2  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) )  =  ( ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) )
136 eqid 2467 . . . . . 6  |-  (Unit `  Y )  =  (Unit `  Y )
137136, 5unitsubm 17100 . . . . 5  |-  ( Y  e.  Ring  ->  (Unit `  Y )  e.  (SubMnd `  G ) )
13821, 137syl 16 . . . 4  |-  ( ph  ->  (Unit `  Y )  e.  (SubMnd `  G )
)
139 elfzle2 11686 . . . . . . . . . . 11  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  <_  ( ( P  - 
1 )  /  2
) )
140139adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  <_  ( ( P  - 
1 )  /  2
) )
14164nnred 10547 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  RR )
142 prmuz2 14087 . . . . . . . . . . . . 13  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
143 uz2m1nn 11152 . . . . . . . . . . . . 13  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
14469, 142, 1433syl 20 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  NN )
145144nnred 10547 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  RR )
146 2re 10601 . . . . . . . . . . . 12  |-  2  e.  RR
147146a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  RR )
148 2pos 10623 . . . . . . . . . . . 12  |-  0  <  2
149148a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <  2 )
150 lemuldiv2 10421 . . . . . . . . . . 11  |-  ( ( x  e.  RR  /\  ( P  -  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  x )  <_  ( P  - 
1 )  <->  x  <_  ( ( P  -  1 )  /  2 ) ) )
151141, 145, 147, 149, 150syl112anc 1232 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 2  x.  x
)  <_  ( P  -  1 )  <->  x  <_  ( ( P  -  1 )  /  2 ) ) )
152140, 151mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  <_  ( P  - 
1 ) )
153 prmz 14073 . . . . . . . . . . . 12  |-  ( P  e.  Prime  ->  P  e.  ZZ )
15469, 153syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  ZZ )
155 peano2zm 10902 . . . . . . . . . . 11  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
156154, 155syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  ZZ )
157 fznn 11743 . . . . . . . . . 10  |-  ( ( P  -  1 )  e.  ZZ  ->  (
( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) )  <->  ( (
2  x.  x )  e.  NN  /\  (
2  x.  x )  <_  ( P  - 
1 ) ) ) )
158156, 157syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) )  <->  ( (
2  x.  x )  e.  NN  /\  (
2  x.  x )  <_  ( P  - 
1 ) ) ) )
15966, 152, 158mpbir2and 920 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ( 1 ... ( P  -  1 ) ) )
160 fzm1ndvds 13890 . . . . . . . 8  |-  ( ( P  e.  NN  /\  ( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  (
2  x.  x ) )
16171, 159, 160syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( 2  x.  x ) )
162 eqid 2467 . . . . . . . . . 10  |-  ( 0g
`  Y )  =  ( 0g `  Y
)
16311, 22, 162zndvds0 18353 . . . . . . . . 9  |-  ( ( P  e.  NN0  /\  ( 2  x.  x
)  e.  ZZ )  ->  ( ( L `
 ( 2  x.  x ) )  =  ( 0g `  Y
)  <->  P  ||  ( 2  x.  x ) ) )
164110, 67, 163syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  (
2  x.  x ) )  =  ( 0g
`  Y )  <->  P  ||  (
2  x.  x ) ) )
165164necon3abid 2713 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  (
2  x.  x ) )  =/=  ( 0g
`  Y )  <->  -.  P  ||  ( 2  x.  x
) ) )
166161, 165mpbird 232 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  x ) )  =/=  ( 0g `  Y
) )
16714simplbi 460 . . . . . . . . 9  |-  ( Y  e. Field  ->  Y  e.  DivRing )
16813, 167syl 16 . . . . . . . 8  |-  ( ph  ->  Y  e.  DivRing )
169168adantr 465 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Y  e.  DivRing )
1706, 136, 162drngunit 17181 . . . . . . 7  |-  ( Y  e.  DivRing  ->  ( ( L `
 ( 2  x.  x ) )  e.  (Unit `  Y )  <->  ( ( L `  (
2  x.  x ) )  e.  ( Base `  Y )  /\  ( L `  ( 2  x.  x ) )  =/=  ( 0g `  Y
) ) ) )
171169, 170syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( L `  (
2  x.  x ) )  e.  (Unit `  Y )  <->  ( ( L `  ( 2  x.  x ) )  e.  ( Base `  Y
)  /\  ( L `  ( 2  x.  x
) )  =/=  ( 0g `  Y ) ) ) )
172123, 166, 171mpbir2and 920 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  x ) )  e.  (Unit `  Y )
)
173172, 132fmptd 6043 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> (Unit `  Y )
)
174 fvex 5874 . . . . . 6  |-  ( L `
 ( 2  x.  x ) )  e. 
_V
175174a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( 2  x.  x ) )  e. 
_V )
176132, 19, 175, 39fsuppmptdm 7836 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) finSupp  ( 0g
`  G ) )
1778, 18, 19, 138, 173, 176gsumsubmcl 16718 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  e.  (Unit `  Y )
)
178 eqid 2467 . . . 4  |-  (/r `  Y
)  =  (/r `  Y
)
179 eqid 2467 . . . 4  |-  ( 1r
`  Y )  =  ( 1r `  Y
)
180136, 178, 179dvrid 17118 . . 3  |-  ( ( Y  e.  Ring  /\  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) )  e.  (Unit `  Y )
)  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) (/r `  Y ) ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  x ) ) ) ) )  =  ( 1r `  Y
) )
18121, 177, 180syl2anc 661 . 2  |-  ( ph  ->  ( ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( 2  x.  x ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) )  =  ( 1r `  Y ) )
182122, 131fmptd 6043 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) : ( 1 ... ( ( P  -  1 )  /  2 ) ) --> ( Base `  Y
) )
183 fvex 5874 . . . . . 6  |-  ( L `
 ( ( -u
1 ^ R )  x.  Q ) )  e.  _V
184183a1i 11 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( L `  ( ( -u 1 ^ R )  x.  Q ) )  e.  _V )
185131, 19, 184, 39fsuppmptdm 7836 . . . 4  |-  ( ph  ->  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) finSupp  ( 0g
`  G ) )
1867, 8, 18, 19, 182, 185gsumcl 16711 . . 3  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  e.  ( Base `  Y
) )
1876, 136, 178, 116dvrcan3 17122 . . 3  |-  ( ( Y  e.  Ring  /\  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  e.  ( Base `  Y
)  /\  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( 2  x.  x ) ) ) )  e.  (Unit `  Y ) )  -> 
( ( ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) ) )
18821, 186, 177, 187syl3anc 1228 . 2  |-  ( ph  ->  ( ( ( G 
gsumg  ( x  e.  (
1 ... ( ( P  -  1 )  / 
2 ) )  |->  ( L `  ( (
-u 1 ^ R
)  x.  Q ) ) ) ) ( .r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) ) (/r `  Y ) ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
2  x.  x ) ) ) ) )  =  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  |->  ( L `
 ( ( -u
1 ^ R )  x.  Q ) ) ) ) )
189135, 181, 1883eqtr3rd 2517 1  |-  ( ph  ->  ( G  gsumg  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( L `  (
( -u 1 ^ R
)  x.  Q ) ) ) )  =  ( 1r `  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2814   _Vcvv 3113    \ cdif 3473   {csn 4027   class class class wbr 4447    |-> cmpt 4505    o. ccom 5003   -->wf 5582   ` cfv 5586  (class class class)co 6282    oFcof 6520   Fincfn 7513   RRcr 9487   0cc0 9488   1c1 9489    x. cmul 9493    < clt 9624    <_ cle 9625    - cmin 9801   -ucneg 9802    / cdiv 10202   NNcn 10532   2c2 10581   NN0cn0 10791   ZZcz 10860   ZZ>=cuz 11078   RR+crp 11216   ...cfz 11668    mod cmo 11959   ^cexp 12129    || cdivides 13840   Primecprime 14069   Basecbs 14483   .rcmulr 14549   0gc0g 14688    gsumg cgsu 14689  SubMndcsubmnd 15773  CMndccmn 16591  mulGrpcmgp 16928   1rcur 16940   Ringcrg 16983   CRingccrg 16984  Unitcui 17069  /rcdvr 17112   RingHom crh 17142   DivRingcdr 17176  Fieldcfield 17177  ℤringzring 18253   ZRHomczrh 18301  ℤ/nczn 18304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-of 6522  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-2o 7128  df-oadd 7131  df-er 7308  df-ec 7310  df-qs 7314  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-sup 7897  df-oi 7931  df-card 8316  df-cda 8544  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-rp 11217  df-fz 11669  df-fzo 11789  df-fl 11893  df-mod 11960  df-seq 12071  df-exp 12130  df-hash 12368  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-dvds 13841  df-gcd 13997  df-prm 14070  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-starv 14563  df-sca 14564  df-vsca 14565  df-ip 14566  df-tset 14567  df-ple 14568  df-ds 14570  df-unif 14571  df-0g 14690  df-gsum 14691  df-imas 14756  df-divs 14757  df-mnd 15725  df-mhm 15774  df-submnd 15775  df-grp 15855  df-minusg 15856  df-sbg 15857  df-mulg 15858  df-subg 15990  df-nsg 15991  df-eqg 15992  df-ghm 16057  df-cntz 16147  df-cmn 16593  df-abl 16594  df-mgp 16929  df-ur 16941  df-rng 16985  df-cring 16986  df-oppr 17053  df-dvdsr 17071  df-unit 17072  df-invr 17102  df-dvr 17113  df-rnghom 17145  df-drng 17178  df-field 17179  df-subrg 17207  df-lmod 17294  df-lss 17359  df-lsp 17398  df-sra 17598  df-rgmod 17599  df-lidl 17600  df-rsp 17601  df-2idl 17659  df-nzr 17685  df-rlreg 17699  df-domn 17700  df-idom 17701  df-cnfld 18189  df-zring 18254  df-zrh 18305  df-zn 18308
This theorem is referenced by:  lgseisenlem4  23352
  Copyright terms: Public domain W3C validator