MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem1 Structured version   Unicode version

Theorem lgseisenlem1 23489
Description: Lemma for lgseisen 23493. If  R ( u )  =  ( Q  x.  u )  mod  P and  M ( u )  =  ( -u
1 ^ R ( u ) )  x.  R ( u ), then for any even  1  <_  u  <_  P  -  1,  M ( u ) is also an even integer  1  <_  M
( u )  <_  P  -  1. To simplify these statements, we divide all the even numbers by  2, so that it becomes the statement that  M ( x  /  2 )  =  ( -u 1 ^ R ( x  / 
2 ) )  x.  R ( x  / 
2 )  /  2 is an integer between  1 and  ( P  -  1 )  / 
2. (Contributed by Mario Carneiro, 17-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgseisen.4  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
lgseisen.5  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
Assertion
Ref Expression
lgseisenlem1  |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  / 
2 ) ) --> ( 1 ... ( ( P  -  1 )  /  2 ) ) )
Distinct variable groups:    x, P    ph, x    x, Q
Allowed substitution hints:    R( x)    M( x)

Proof of Theorem lgseisenlem1
StepHypRef Expression
1 neg1cn 10640 . . . . . . . . . . . . . . 15  |-  -u 1  e.  CC
21a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  -u 1  e.  CC )
3 neg1ne0 10642 . . . . . . . . . . . . . . 15  |-  -u 1  =/=  0
43a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  -u 1  =/=  0 )
5 2z 10897 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
65a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  2  e.  ZZ )
7 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( R  /  2 )  e.  ZZ )
8 expmulz 12186 . . . . . . . . . . . . . 14  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
2  e.  ZZ  /\  ( R  /  2
)  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( R  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( R  /  2
) ) )
92, 4, 6, 7, 8syl22anc 1228 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( -u 1 ^ ( 2  x.  ( R  / 
2 ) ) )  =  ( ( -u
1 ^ 2 ) ^ ( R  / 
2 ) ) )
10 lgseisen.4 . . . . . . . . . . . . . . . . . . . 20  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
11 lgseisen.2 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
1211adantr 465 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  ( Prime  \  { 2 } ) )
1312eldifad 3470 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  Prime )
14 prmz 14093 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
1513, 14syl 16 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  ZZ )
16 elfzelz 11692 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  ZZ )
1716adantl 466 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  ZZ )
18 zmulcl 10913 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  ZZ  /\  x  e.  ZZ )  ->  ( 2  x.  x
)  e.  ZZ )
195, 17, 18sylancr 663 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ZZ )
2015, 19zmulcld 10975 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  ZZ )
21 lgseisen.1 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2221adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  ( Prime  \  { 2 } ) )
2322eldifad 3470 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  Prime )
24 prmnn 14092 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P  e.  NN )
2523, 24syl 16 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN )
26 zmodfz 11991 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Q  x.  (
2  x.  x ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)  e.  ( 0 ... ( P  - 
1 ) ) )
2720, 25, 26syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  e.  ( 0 ... ( P  -  1 ) ) )
2810, 27syl5eqel 2533 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
29 elfznn0 11774 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  ( 0 ... ( P  -  1 ) )  ->  R  e.  NN0 )
3028, 29syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  NN0 )
3130nn0zd 10967 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ZZ )
3231zcnd 10970 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  CC )
3332adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  R  e.  CC )
34 2cnd 10609 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  2  e.  CC )
35 2ne0 10629 . . . . . . . . . . . . . . . 16  |-  2  =/=  0
3635a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  2  =/=  0 )
3733, 34, 36divcan2d 10323 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
2  x.  ( R  /  2 ) )  =  R )
3837oveq2d 6293 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( -u 1 ^ ( 2  x.  ( R  / 
2 ) ) )  =  ( -u 1 ^ R ) )
39 neg1sqe1 12237 . . . . . . . . . . . . . . 15  |-  ( -u
1 ^ 2 )  =  1
4039oveq1i 6287 . . . . . . . . . . . . . 14  |-  ( (
-u 1 ^ 2 ) ^ ( R  /  2 ) )  =  ( 1 ^ ( R  /  2
) )
41 1exp 12169 . . . . . . . . . . . . . . 15  |-  ( ( R  /  2 )  e.  ZZ  ->  (
1 ^ ( R  /  2 ) )  =  1 )
4241adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
1 ^ ( R  /  2 ) )  =  1 )
4340, 42syl5eq 2494 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( -u 1 ^ 2 ) ^ ( R  /  2 ) )  =  1 )
449, 38, 433eqtr3d 2490 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( -u 1 ^ R )  =  1 )
4544oveq1d 6292 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( -u 1 ^ R
)  x.  R )  =  ( 1  x.  R ) )
4633mulid2d 9612 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
1  x.  R )  =  R )
4745, 46eqtrd 2482 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( -u 1 ^ R
)  x.  R )  =  R )
4847oveq1d 6292 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  =  ( R  mod  P ) )
4930nn0red 10854 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  RR )
5025nnrpd 11259 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  RR+ )
5130nn0ge0d 10856 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <_  R )
5220zred 10969 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  RR )
53 modlt 11980 . . . . . . . . . . . . 13  |-  ( ( ( Q  x.  (
2  x.  x ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( Q  x.  ( 2  x.  x
) )  mod  P
)  <  P )
5452, 50, 53syl2anc 661 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  <  P )
5510, 54syl5eqbr 4466 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  <  P )
56 modid 11994 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  R  /\  R  <  P ) )  ->  ( R  mod  P )  =  R )
5749, 50, 51, 55, 56syl22anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  mod  P )  =  R )
5857adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( R  mod  P )  =  R )
5948, 58eqtrd 2482 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  =  R )
6059oveq1d 6292 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  =  ( R  /  2 ) )
6160, 7eqeltrd 2529 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ZZ )
6225nncnd 10553 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  CC )
6362mulid2d 9612 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1  x.  P )  =  P )
6463oveq2d 6293 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u R  +  ( 1  x.  P ) )  =  ( -u R  +  P ) )
6549renegcld 9987 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u R  e.  RR )
6665recnd 9620 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u R  e.  CC )
6762, 66addcomd 9780 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  +  -u R )  =  ( -u R  +  P ) )
6862, 32negsubd 9937 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  +  -u R )  =  ( P  -  R ) )
6964, 67, 683eqtr2d 2488 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u R  +  ( 1  x.  P ) )  =  ( P  -  R ) )
7069oveq1d 6292 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u R  +  ( 1  x.  P ) )  mod  P )  =  ( ( P  -  R )  mod 
P ) )
71 1zzd 10896 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  1  e.  ZZ )
72 modcyc 12005 . . . . . . . . . . . . 13  |-  ( (
-u R  e.  RR  /\  P  e.  RR+  /\  1  e.  ZZ )  ->  (
( -u R  +  ( 1  x.  P ) )  mod  P )  =  ( -u R  mod  P ) )
7365, 50, 71, 72syl3anc 1227 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u R  +  ( 1  x.  P ) )  mod  P )  =  ( -u R  mod  P ) )
7425nnred 10552 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  RR )
7574, 49resubcld 9988 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  R )  e.  RR )
7649, 74, 55ltled 9731 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  <_  P )
7774, 49subge0d 10143 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
0  <_  ( P  -  R )  <->  R  <_  P ) )
7876, 77mpbird 232 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <_  ( P  -  R
) )
79 2nn 10694 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  e.  NN
80 elfznn 11718 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  NN )
8180adantl 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  NN )
82 nnmulcl 10560 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2  e.  NN  /\  x  e.  NN )  ->  ( 2  x.  x
)  e.  NN )
8379, 81, 82sylancr 663 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  NN )
84 elfzle2 11694 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  <_  ( ( P  - 
1 )  /  2
) )
8584adantl 466 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  <_  ( ( P  - 
1 )  /  2
) )
8681nnred 10552 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  RR )
87 prmuz2 14107 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
88 uz2m1nn 11160 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
8923, 87, 883syl 20 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  NN )
9089nnred 10552 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  RR )
91 2re 10606 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  2  e.  RR
9291a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  RR )
93 2pos 10628 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  <  2
9493a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <  2 )
95 lemuldiv2 10426 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  RR  /\  ( P  -  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  x )  <_  ( P  - 
1 )  <->  x  <_  ( ( P  -  1 )  /  2 ) ) )
9686, 90, 92, 94, 95syl112anc 1231 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 2  x.  x
)  <_  ( P  -  1 )  <->  x  <_  ( ( P  -  1 )  /  2 ) ) )
9785, 96mpbird 232 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  <_  ( P  - 
1 ) )
98 prmz 14093 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  Prime  ->  P  e.  ZZ )
9923, 98syl 16 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  ZZ )
100 peano2zm 10908 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
101 fznn 11751 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  -  1 )  e.  ZZ  ->  (
( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) )  <->  ( (
2  x.  x )  e.  NN  /\  (
2  x.  x )  <_  ( P  - 
1 ) ) ) )
10299, 100, 1013syl 20 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) )  <->  ( (
2  x.  x )  e.  NN  /\  (
2  x.  x )  <_  ( P  - 
1 ) ) ) )
10383, 97, 102mpbir2and 920 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ( 1 ... ( P  -  1 ) ) )
104 fzm1ndvds 13910 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  e.  NN  /\  ( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  (
2  x.  x ) )
10525, 103, 104syl2anc 661 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( 2  x.  x ) )
106 lgseisen.3 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  P  =/=  Q )
107106adantr 465 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  =/=  Q )
108 prmrp 14114 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  (
( P  gcd  Q
)  =  1  <->  P  =/=  Q ) )
10923, 13, 108syl2anc 661 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  gcd  Q
)  =  1  <->  P  =/=  Q ) )
110107, 109mpbird 232 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  gcd  Q )  =  1 )
111 coprmdvds 14115 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  ZZ  /\  Q  e.  ZZ  /\  (
2  x.  x )  e.  ZZ )  -> 
( ( P  ||  ( Q  x.  (
2  x.  x ) )  /\  ( P  gcd  Q )  =  1 )  ->  P  ||  ( 2  x.  x
) ) )
11299, 15, 19, 111syl3anc 1227 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  ||  ( Q  x.  ( 2  x.  x ) )  /\  ( P  gcd  Q )  =  1 )  ->  P  ||  (
2  x.  x ) ) )
113110, 112mpan2d 674 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( Q  x.  ( 2  x.  x
) )  ->  P  ||  ( 2  x.  x
) ) )
114105, 113mtod 177 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( Q  x.  ( 2  x.  x
) ) )
115 dvdsval3 13862 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  NN  /\  ( Q  x.  (
2  x.  x ) )  e.  ZZ )  ->  ( P  ||  ( Q  x.  (
2  x.  x ) )  <->  ( ( Q  x.  ( 2  x.  x ) )  mod 
P )  =  0 ) )
11625, 20, 115syl2anc 661 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( Q  x.  ( 2  x.  x
) )  <->  ( ( Q  x.  ( 2  x.  x ) )  mod  P )  =  0 ) )
117114, 116mtbid 300 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)  =  0 )
11810eqeq1i 2448 . . . . . . . . . . . . . . . . . . 19  |-  ( R  =  0  <->  ( ( Q  x.  ( 2  x.  x ) )  mod  P )  =  0 )
119117, 118sylnibr 305 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  R  =  0 )
12089nnnn0d 10853 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  NN0 )
121 nn0uz 11119 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN0  =  ( ZZ>= `  0 )
122120, 121syl6eleq 2539 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  ( ZZ>= `  0
) )
123 elfzp12 11761 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  -  1 )  e.  ( ZZ>= `  0
)  ->  ( R  e.  ( 0 ... ( P  -  1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
124122, 123syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  e.  ( 0 ... ( P  - 
1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
12528, 124mpbid 210 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  =  0  \/  R  e.  ( (
0  +  1 ) ... ( P  - 
1 ) ) ) )
126125ord 377 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -.  R  =  0  ->  R  e.  ( ( 0  +  1 ) ... ( P  - 
1 ) ) ) )
127119, 126mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) )
128 1e0p1 11007 . . . . . . . . . . . . . . . . . 18  |-  1  =  ( 0  +  1 )
129128oveq1i 6287 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
130127, 129syl6eleqr 2540 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ( 1 ... ( P  -  1 ) ) )
131 elfznn 11718 . . . . . . . . . . . . . . . 16  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  NN )
132130, 131syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  NN )
133132nnrpd 11259 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  RR+ )
13474, 133ltsubrpd 11288 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  R )  <  P )
135 modid 11994 . . . . . . . . . . . . 13  |-  ( ( ( ( P  -  R )  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  ( P  -  R )  /\  ( P  -  R
)  <  P )
)  ->  ( ( P  -  R )  mod  P )  =  ( P  -  R ) )
13675, 50, 78, 134, 135syl22anc 1228 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  -  R
)  mod  P )  =  ( P  -  R ) )
13770, 73, 1363eqtr3d 2490 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u R  mod  P )  =  ( P  -  R ) )
138137adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( -u R  mod  P
)  =  ( P  -  R ) )
139 ax-1cn 9548 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
140139a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
1  e.  CC )
141132adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  R  e.  NN )
1425a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  ZZ )
14335a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  =/=  0 )
14431peano2zd 10972 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  +  1 )  e.  ZZ )
145 dvdsval2 13861 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( R  +  1 )  e.  ZZ )  -> 
( 2  ||  ( R  +  1 )  <-> 
( ( R  + 
1 )  /  2
)  e.  ZZ ) )
146142, 143, 144, 145syl3anc 1227 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  ||  ( R  +  1 )  <->  ( ( R  +  1 )  /  2 )  e.  ZZ ) )
147146biimpar 485 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
2  ||  ( R  +  1 ) )
14831adantr 465 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  R  e.  ZZ )
14979a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
2  e.  NN )
150 1lt2 10703 . . . . . . . . . . . . . . . . . 18  |-  1  <  2
151150a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
1  <  2 )
152 ndvdsp1 13939 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  2  e.  NN  /\  1  <  2 )  ->  (
2  ||  R  ->  -.  2  ||  ( R  +  1 ) ) )
153148, 149, 151, 152syl3anc 1227 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( 2  ||  R  ->  -.  2  ||  ( R  +  1 ) ) )
154147, 153mt2d 117 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  -.  2  ||  R )
155 oexpneg 13921 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  R  e.  NN  /\  -.  2  ||  R )  -> 
( -u 1 ^ R
)  =  -u (
1 ^ R ) )
156140, 141, 154, 155syl3anc 1227 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( -u 1 ^ R
)  =  -u (
1 ^ R ) )
157 1exp 12169 . . . . . . . . . . . . . . . 16  |-  ( R  e.  ZZ  ->  (
1 ^ R )  =  1 )
158148, 157syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( 1 ^ R
)  =  1 )
159158negeqd 9814 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  -u ( 1 ^ R
)  =  -u 1
)
160156, 159eqtrd 2482 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( -u 1 ^ R
)  =  -u 1
)
161160oveq1d 6292 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( -u 1 ^ R )  x.  R
)  =  ( -u
1  x.  R ) )
16232adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  R  e.  CC )
163162mulm1d 10009 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( -u 1  x.  R
)  =  -u R
)
164161, 163eqtrd 2482 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( -u 1 ^ R )  x.  R
)  =  -u R
)
165164oveq1d 6292 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  (
-u R  mod  P
) )
16662adantr 465 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  P  e.  CC )
167166, 162, 140pnpcan2d 9969 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  + 
1 )  -  ( R  +  1 ) )  =  ( P  -  R ) )
168138, 165, 1673eqtr4d 2492 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  ( ( P  +  1 )  -  ( R  +  1 ) ) )
169168oveq1d 6292 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  =  ( ( ( P  + 
1 )  -  ( R  +  1 ) )  /  2 ) )
170 peano2cn 9750 . . . . . . . . . 10  |-  ( P  e.  CC  ->  ( P  +  1 )  e.  CC )
171166, 170syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( P  +  1 )  e.  CC )
172 peano2cn 9750 . . . . . . . . . 10  |-  ( R  e.  CC  ->  ( R  +  1 )  e.  CC )
173162, 172syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( R  +  1 )  e.  CC )
174 2cnd 10609 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
2  e.  CC )
17535a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
2  =/=  0 )
176171, 173, 174, 175divsubdird 10360 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  +  1 )  -  ( R  +  1
) )  /  2
)  =  ( ( ( P  +  1 )  /  2 )  -  ( ( R  +  1 )  / 
2 ) ) )
177169, 176eqtrd 2482 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  =  ( ( ( P  + 
1 )  /  2
)  -  ( ( R  +  1 )  /  2 ) ) )
178166, 140, 174subadd23d 9953 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  - 
1 )  +  2 )  =  ( P  +  ( 2  -  1 ) ) )
179 2m1e1 10651 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
180179oveq2i 6288 . . . . . . . . . . . 12  |-  ( P  +  ( 2  -  1 ) )  =  ( P  +  1 )
181178, 180syl6req 2499 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( P  +  1 )  =  ( ( P  -  1 )  +  2 ) )
182181oveq1d 6292 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  + 
1 )  /  2
)  =  ( ( ( P  -  1 )  +  2 )  /  2 ) )
18389nncnd 10553 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  CC )
184183adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( P  -  1 )  e.  CC )
185184, 174, 174, 175divdird 10359 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  -  1 )  +  2 )  /  2
)  =  ( ( ( P  -  1 )  /  2 )  +  ( 2  / 
2 ) ) )
186 2div2e1 10659 . . . . . . . . . . . 12  |-  ( 2  /  2 )  =  1
187186oveq2i 6288 . . . . . . . . . . 11  |-  ( ( ( P  -  1 )  /  2 )  +  ( 2  / 
2 ) )  =  ( ( ( P  -  1 )  / 
2 )  +  1 )
188185, 187syl6eq 2498 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  -  1 )  +  2 )  /  2
)  =  ( ( ( P  -  1 )  /  2 )  +  1 ) )
189182, 188eqtrd 2482 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  + 
1 )  /  2
)  =  ( ( ( P  -  1 )  /  2 )  +  1 ) )
190 oddprm 14211 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
19122, 190syl 16 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  -  1 )  /  2 )  e.  NN )
192191nnzd 10968 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
193192adantr 465 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  - 
1 )  /  2
)  e.  ZZ )
194193peano2zd 10972 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  -  1 )  / 
2 )  +  1 )  e.  ZZ )
195189, 194eqeltrd 2529 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  + 
1 )  /  2
)  e.  ZZ )
196 simpr 461 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( R  + 
1 )  /  2
)  e.  ZZ )
197195, 196zsubcld 10974 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  +  1 )  / 
2 )  -  (
( R  +  1 )  /  2 ) )  e.  ZZ )
198177, 197eqeltrd 2529 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  e.  ZZ )
199 zeo 10949 . . . . . . 7  |-  ( R  e.  ZZ  ->  (
( R  /  2
)  e.  ZZ  \/  ( ( R  + 
1 )  /  2
)  e.  ZZ ) )
20031, 199syl 16 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( R  /  2
)  e.  ZZ  \/  ( ( R  + 
1 )  /  2
)  e.  ZZ ) )
20161, 198, 200mpjaodan 784 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ZZ )
202 m1expcl 12163 . . . . . . . . . 10  |-  ( R  e.  ZZ  ->  ( -u 1 ^ R )  e.  ZZ )
20331, 202syl 16 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  ZZ )
204203, 31zmulcld 10975 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  R )  e.  ZZ )
205204, 25zmodcld 11990 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN0 )
206205nn0red 10854 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  RR )
207 fzm1ndvds 13910 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  R  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  R
)
20825, 130, 207syl2anc 661 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  R )
209 ax-1ne0 9559 . . . . . . . . . . . . . . . . . . . 20  |-  1  =/=  0
210 divneg2 10269 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  CC  /\  1  e.  CC  /\  1  =/=  0 )  ->  -u (
1  /  1 )  =  ( 1  /  -u 1 ) )
211139, 139, 209, 210mp3an 1323 . . . . . . . . . . . . . . . . . . 19  |-  -u (
1  /  1 )  =  ( 1  /  -u 1 )
212 1div1e1 10238 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  1 )  =  1
213212negeqi 9813 . . . . . . . . . . . . . . . . . . 19  |-  -u (
1  /  1 )  =  -u 1
214211, 213eqtr3i 2472 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  -u 1 )  = 
-u 1
215214oveq1i 6287 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  -u 1
) ^ R )  =  ( -u 1 ^ R )
2161a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u 1  e.  CC )
2173a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u 1  =/=  0 )
218216, 217, 31exprecd 12292 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 1  /  -u 1
) ^ R )  =  ( 1  / 
( -u 1 ^ R
) ) )
219215, 218syl5eqr 2496 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  =  ( 1  / 
( -u 1 ^ R
) ) )
220219oveq2d 6293 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  ( -u
1 ^ R ) )  =  ( (
-u 1 ^ R
)  x.  ( 1  /  ( -u 1 ^ R ) ) ) )
221203zcnd 10970 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  CC )
222216, 217, 31expne0d 12290 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  =/=  0 )
223221, 222recidd 10316 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  ( 1  /  ( -u 1 ^ R ) ) )  =  1 )
224220, 223eqtrd 2482 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  ( -u
1 ^ R ) )  =  1 )
225224oveq1d 6292 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  ( -u 1 ^ R ) )  x.  R )  =  ( 1  x.  R ) )
226221, 221, 32mulassd 9617 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  ( -u 1 ^ R ) )  x.  R )  =  ( ( -u
1 ^ R )  x.  ( ( -u
1 ^ R )  x.  R ) ) )
22732mulid2d 9612 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1  x.  R )  =  R )
228225, 226, 2273eqtr3d 2490 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  ( (
-u 1 ^ R
)  x.  R ) )  =  R )
229228breq2d 4445 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( ( -u
1 ^ R )  x.  ( ( -u
1 ^ R )  x.  R ) )  <-> 
P  ||  R )
)
230208, 229mtbird 301 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( ( -u
1 ^ R )  x.  ( ( -u
1 ^ R )  x.  R ) ) )
231 dvdsmultr2 13893 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  ( -u 1 ^ R
)  e.  ZZ  /\  ( ( -u 1 ^ R )  x.  R
)  e.  ZZ )  ->  ( P  ||  ( ( -u 1 ^ R )  x.  R
)  ->  P  ||  (
( -u 1 ^ R
)  x.  ( (
-u 1 ^ R
)  x.  R ) ) ) )
23299, 203, 204, 231syl3anc 1227 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( ( -u
1 ^ R )  x.  R )  ->  P  ||  ( ( -u
1 ^ R )  x.  ( ( -u
1 ^ R )  x.  R ) ) ) )
233230, 232mtod 177 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( ( -u
1 ^ R )  x.  R ) )
234 dvdsval3 13862 . . . . . . . . . 10  |-  ( ( P  e.  NN  /\  ( ( -u 1 ^ R )  x.  R
)  e.  ZZ )  ->  ( P  ||  ( ( -u 1 ^ R )  x.  R
)  <->  ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  =  0 ) )
23525, 204, 234syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( ( -u
1 ^ R )  x.  R )  <->  ( (
( -u 1 ^ R
)  x.  R )  mod  P )  =  0 ) )
236233, 235mtbid 300 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  0 )
237 elnn0 10798 . . . . . . . . . 10  |-  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN0  <->  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN  \/  ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  =  0 ) )
238205, 237sylib 196 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  NN  \/  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  0 ) )
239238ord 377 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -.  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  NN  ->  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  0 ) )
240236, 239mt3d 125 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN )
241240nngt0d 10580 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <  ( ( ( -u
1 ^ R )  x.  R )  mod 
P ) )
242206, 92, 241, 94divgt0d 10482 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
243 elnnz 10875 . . . . 5  |-  ( ( ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  NN  <->  ( (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ZZ  /\  0  <  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) )
244201, 242, 243sylanbrc 664 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  NN )
245244nnge1d 10579 . . 3  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  1  <_  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
246 zmodfz 11991 . . . . . 6  |-  ( ( ( ( -u 1 ^ R )  x.  R
)  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  ( 0 ... ( P  -  1 ) ) )
247204, 25, 246syl2anc 661 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  ( 0 ... ( P  -  1 ) ) )
248 elfzle2 11694 . . . . 5  |-  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  ( 0 ... ( P  -  1 ) )  ->  ( (
( -u 1 ^ R
)  x.  R )  mod  P )  <_ 
( P  -  1 ) )
249247, 248syl 16 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  <_  ( P  -  1 ) )
250 lediv1 10408 . . . . 5  |-  ( ( ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  RR  /\  ( P  -  1 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( ( -u 1 ^ R )  x.  R
)  mod  P )  <_  ( P  -  1 )  <->  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  <_ 
( ( P  - 
1 )  /  2
) ) )
251206, 90, 92, 94, 250syl112anc 1231 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  <_  ( P  -  1 )  <-> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  <_  (
( P  -  1 )  /  2 ) ) )
252249, 251mpbid 210 . . 3  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  <_  ( ( P  -  1 )  /  2 ) )
253 elfz 11682 . . . 4  |-  ( ( ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  e.  ZZ  /\  1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  <->  ( 1  <_ 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  /\  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  <_  ( ( P  -  1 )  /  2 ) ) ) )
254201, 71, 192, 253syl3anc 1227 . . 3  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  e.  ( 1 ... ( ( P  -  1 )  /  2 ) )  <-> 
( 1  <_  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  /\  ( (
( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  <_ 
( ( P  - 
1 )  /  2
) ) ) )
255245, 252, 254mpbir2and 920 . 2  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
256 lgseisen.5 . 2  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
257255, 256fmptd 6036 1  |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  / 
2 ) ) --> ( 1 ... ( ( P  -  1 )  /  2 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1381    e. wcel 1802    =/= wne 2636    \ cdif 3455   {csn 4010   class class class wbr 4433    |-> cmpt 4491   -->wf 5570   ` cfv 5574  (class class class)co 6277   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626    <_ cle 9627    - cmin 9805   -ucneg 9806    / cdiv 10207   NNcn 10537   2c2 10586   NN0cn0 10796   ZZcz 10865   ZZ>=cuz 11085   RR+crp 11224   ...cfz 11676    mod cmo 11970   ^cexp 12140    || cdvds 13858    gcd cgcd 14016   Primecprime 14089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-recs 7040  df-rdg 7074  df-1o 7128  df-2o 7129  df-oadd 7132  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-sup 7899  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-div 10208  df-nn 10538  df-2 10595  df-3 10596  df-n0 10797  df-z 10866  df-uz 11086  df-rp 11225  df-fz 11677  df-fl 11903  df-mod 11971  df-seq 12082  df-exp 12141  df-cj 12906  df-re 12907  df-im 12908  df-sqrt 13042  df-abs 13043  df-dvds 13859  df-gcd 14017  df-prm 14090
This theorem is referenced by:  lgseisenlem2  23490  lgseisenlem3  23491
  Copyright terms: Public domain W3C validator