MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgseisenlem1 Structured version   Visualization version   Unicode version

Theorem lgseisenlem1 24356
Description: Lemma for lgseisen 24360. If  R ( u )  =  ( Q  x.  u )  mod  P and  M ( u )  =  ( -u
1 ^ R ( u ) )  x.  R ( u ), then for any even  1  <_  u  <_  P  -  1,  M ( u ) is also an even integer  1  <_  M
( u )  <_  P  -  1. To simplify these statements, we divide all the even numbers by  2, so that it becomes the statement that  M ( x  /  2 )  =  ( -u 1 ^ R ( x  / 
2 ) )  x.  R ( x  / 
2 )  /  2 is an integer between  1 and  ( P  -  1 )  / 
2. (Contributed by Mario Carneiro, 17-Jun-2015.)
Hypotheses
Ref Expression
lgseisen.1  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
lgseisen.2  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
lgseisen.3  |-  ( ph  ->  P  =/=  Q )
lgseisen.4  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
lgseisen.5  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
Assertion
Ref Expression
lgseisenlem1  |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  / 
2 ) ) --> ( 1 ... ( ( P  -  1 )  /  2 ) ) )
Distinct variable groups:    x, P    ph, x    x, Q
Allowed substitution hints:    R( x)    M( x)

Proof of Theorem lgseisenlem1
StepHypRef Expression
1 neg1cn 10735 . . . . . . . . . . . . . . 15  |-  -u 1  e.  CC
21a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  -u 1  e.  CC )
3 neg1ne0 10737 . . . . . . . . . . . . . . 15  |-  -u 1  =/=  0
43a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  -u 1  =/=  0 )
5 2z 10993 . . . . . . . . . . . . . . 15  |-  2  e.  ZZ
65a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  2  e.  ZZ )
7 simpr 468 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( R  /  2 )  e.  ZZ )
8 expmulz 12356 . . . . . . . . . . . . . 14  |-  ( ( ( -u 1  e.  CC  /\  -u 1  =/=  0 )  /\  (
2  e.  ZZ  /\  ( R  /  2
)  e.  ZZ ) )  ->  ( -u 1 ^ ( 2  x.  ( R  /  2
) ) )  =  ( ( -u 1 ^ 2 ) ^
( R  /  2
) ) )
92, 4, 6, 7, 8syl22anc 1293 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( -u 1 ^ ( 2  x.  ( R  / 
2 ) ) )  =  ( ( -u
1 ^ 2 ) ^ ( R  / 
2 ) ) )
10 lgseisen.4 . . . . . . . . . . . . . . . . . . . 20  |-  R  =  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)
11 lgseisen.2 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ph  ->  Q  e.  ( Prime  \  { 2 } ) )
1211adantr 472 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  ( Prime  \  { 2 } ) )
1312eldifad 3402 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  Prime )
14 prmz 14705 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( Q  e.  Prime  ->  Q  e.  ZZ )
1513, 14syl 17 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  Q  e.  ZZ )
16 elfzelz 11826 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  ZZ )
1716adantl 473 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  ZZ )
18 zmulcl 11009 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( 2  e.  ZZ  /\  x  e.  ZZ )  ->  ( 2  x.  x
)  e.  ZZ )
195, 17, 18sylancr 676 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ZZ )
2015, 19zmulcld 11069 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  ZZ )
21 lgseisen.1 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  P  e.  ( Prime  \  { 2 } ) )
2221adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  ( Prime  \  { 2 } ) )
2322eldifad 3402 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  Prime )
24 prmnn 14704 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( P  e.  Prime  ->  P  e.  NN )
2523, 24syl 17 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  NN )
26 zmodfz 12151 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( Q  x.  (
2  x.  x ) )  e.  ZZ  /\  P  e.  NN )  ->  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)  e.  ( 0 ... ( P  - 
1 ) ) )
2720, 25, 26syl2anc 673 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  e.  ( 0 ... ( P  -  1 ) ) )
2810, 27syl5eqel 2553 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ( 0 ... ( P  -  1 ) ) )
29 elfznn0 11913 . . . . . . . . . . . . . . . . . . 19  |-  ( R  e.  ( 0 ... ( P  -  1 ) )  ->  R  e.  NN0 )
3028, 29syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  NN0 )
3130nn0zd 11061 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ZZ )
3231zcnd 11064 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  CC )
3332adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  R  e.  CC )
34 2cnd 10704 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  2  e.  CC )
35 2ne0 10724 . . . . . . . . . . . . . . . 16  |-  2  =/=  0
3635a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  2  =/=  0 )
3733, 34, 36divcan2d 10407 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
2  x.  ( R  /  2 ) )  =  R )
3837oveq2d 6324 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( -u 1 ^ ( 2  x.  ( R  / 
2 ) ) )  =  ( -u 1 ^ R ) )
39 neg1sqe1 12408 . . . . . . . . . . . . . . 15  |-  ( -u
1 ^ 2 )  =  1
4039oveq1i 6318 . . . . . . . . . . . . . 14  |-  ( (
-u 1 ^ 2 ) ^ ( R  /  2 ) )  =  ( 1 ^ ( R  /  2
) )
41 1exp 12339 . . . . . . . . . . . . . . 15  |-  ( ( R  /  2 )  e.  ZZ  ->  (
1 ^ ( R  /  2 ) )  =  1 )
4241adantl 473 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
1 ^ ( R  /  2 ) )  =  1 )
4340, 42syl5eq 2517 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( -u 1 ^ 2 ) ^ ( R  /  2 ) )  =  1 )
449, 38, 433eqtr3d 2513 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( -u 1 ^ R )  =  1 )
4544oveq1d 6323 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( -u 1 ^ R
)  x.  R )  =  ( 1  x.  R ) )
4633mulid2d 9679 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
1  x.  R )  =  R )
4745, 46eqtrd 2505 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( -u 1 ^ R
)  x.  R )  =  R )
4847oveq1d 6323 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  =  ( R  mod  P ) )
4930nn0red 10950 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  RR )
5025nnrpd 11362 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  RR+ )
5130nn0ge0d 10952 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <_  R )
5220zred 11063 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( Q  x.  ( 2  x.  x ) )  e.  RR )
53 modlt 12140 . . . . . . . . . . . . 13  |-  ( ( ( Q  x.  (
2  x.  x ) )  e.  RR  /\  P  e.  RR+ )  -> 
( ( Q  x.  ( 2  x.  x
) )  mod  P
)  <  P )
5452, 50, 53syl2anc 673 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( Q  x.  (
2  x.  x ) )  mod  P )  <  P )
5510, 54syl5eqbr 4429 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  <  P )
56 modid 12154 . . . . . . . . . . 11  |-  ( ( ( R  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  R  /\  R  <  P ) )  ->  ( R  mod  P )  =  R )
5749, 50, 51, 55, 56syl22anc 1293 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  mod  P )  =  R )
5857adantr 472 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  ( R  mod  P )  =  R )
5948, 58eqtrd 2505 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  =  R )
6059oveq1d 6323 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  =  ( R  /  2 ) )
6160, 7eqeltrd 2549 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  ( R  /  2 )  e.  ZZ )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ZZ )
6225nncnd 10647 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  CC )
6362mulid2d 9679 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1  x.  P )  =  P )
6463oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u R  +  ( 1  x.  P ) )  =  ( -u R  +  P ) )
6549renegcld 10067 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u R  e.  RR )
6665recnd 9687 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u R  e.  CC )
6762, 66addcomd 9853 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  +  -u R )  =  ( -u R  +  P ) )
6862, 32negsubd 10011 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  +  -u R )  =  ( P  -  R ) )
6964, 67, 683eqtr2d 2511 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u R  +  ( 1  x.  P ) )  =  ( P  -  R ) )
7069oveq1d 6323 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u R  +  ( 1  x.  P ) )  mod  P )  =  ( ( P  -  R )  mod 
P ) )
71 1zzd 10992 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  1  e.  ZZ )
72 modcyc 12165 . . . . . . . . . . . . 13  |-  ( (
-u R  e.  RR  /\  P  e.  RR+  /\  1  e.  ZZ )  ->  (
( -u R  +  ( 1  x.  P ) )  mod  P )  =  ( -u R  mod  P ) )
7365, 50, 71, 72syl3anc 1292 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u R  +  ( 1  x.  P ) )  mod  P )  =  ( -u R  mod  P ) )
7425nnred 10646 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  RR )
7574, 49resubcld 10068 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  R )  e.  RR )
7649, 74, 55ltled 9800 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  <_  P )
7774, 49subge0d 10224 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
0  <_  ( P  -  R )  <->  R  <_  P ) )
7876, 77mpbird 240 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <_  ( P  -  R
) )
79 2nn 10790 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  2  e.  NN
80 elfznn 11854 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  e.  NN )
8180adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  NN )
82 nnmulcl 10654 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( 2  e.  NN  /\  x  e.  NN )  ->  ( 2  x.  x
)  e.  NN )
8379, 81, 82sylancr 676 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  NN )
84 elfzle2 11829 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( x  e.  ( 1 ... ( ( P  - 
1 )  /  2
) )  ->  x  <_  ( ( P  - 
1 )  /  2
) )
8584adantl 473 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  <_  ( ( P  - 
1 )  /  2
) )
8681nnred 10646 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  x  e.  RR )
87 prmuz2 14721 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P  e.  Prime  ->  P  e.  ( ZZ>= `  2 )
)
88 uz2m1nn 11256 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( P  e.  ( ZZ>= `  2
)  ->  ( P  -  1 )  e.  NN )
8923, 87, 883syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  NN )
9089nnred 10646 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  RR )
91 2re 10701 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  2  e.  RR
9291a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  RR )
93 2pos 10723 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  0  <  2
9493a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <  2 )
95 lemuldiv2 10509 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( x  e.  RR  /\  ( P  -  1
)  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
2  x.  x )  <_  ( P  - 
1 )  <->  x  <_  ( ( P  -  1 )  /  2 ) ) )
9686, 90, 92, 94, 95syl112anc 1296 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 2  x.  x
)  <_  ( P  -  1 )  <->  x  <_  ( ( P  -  1 )  /  2 ) ) )
9785, 96mpbird 240 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  <_  ( P  - 
1 ) )
98 prmz 14705 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( P  e.  Prime  ->  P  e.  ZZ )
9923, 98syl 17 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  e.  ZZ )
100 peano2zm 11004 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( P  e.  ZZ  ->  ( P  -  1 )  e.  ZZ )
101 fznn 11889 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  -  1 )  e.  ZZ  ->  (
( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) )  <->  ( (
2  x.  x )  e.  NN  /\  (
2  x.  x )  <_  ( P  - 
1 ) ) ) )
10299, 100, 1013syl 18 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) )  <->  ( (
2  x.  x )  e.  NN  /\  (
2  x.  x )  <_  ( P  - 
1 ) ) ) )
10383, 97, 102mpbir2and 936 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  x.  x )  e.  ( 1 ... ( P  -  1 ) ) )
104 fzm1ndvds 14434 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( P  e.  NN  /\  ( 2  x.  x
)  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  (
2  x.  x ) )
10525, 103, 104syl2anc 673 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( 2  x.  x ) )
106 lgseisen.3 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ph  ->  P  =/=  Q )
107106adantr 472 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  P  =/=  Q )
108 prmrp 14737 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( P  e.  Prime  /\  Q  e.  Prime )  ->  (
( P  gcd  Q
)  =  1  <->  P  =/=  Q ) )
10923, 13, 108syl2anc 673 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  gcd  Q
)  =  1  <->  P  =/=  Q ) )
110107, 109mpbird 240 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  gcd  Q )  =  1 )
111 coprmdvds 14738 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( P  e.  ZZ  /\  Q  e.  ZZ  /\  (
2  x.  x )  e.  ZZ )  -> 
( ( P  ||  ( Q  x.  (
2  x.  x ) )  /\  ( P  gcd  Q )  =  1 )  ->  P  ||  ( 2  x.  x
) ) )
11299, 15, 19, 111syl3anc 1292 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  ||  ( Q  x.  ( 2  x.  x ) )  /\  ( P  gcd  Q )  =  1 )  ->  P  ||  (
2  x.  x ) ) )
113110, 112mpan2d 688 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( Q  x.  ( 2  x.  x
) )  ->  P  ||  ( 2  x.  x
) ) )
114105, 113mtod 182 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( Q  x.  ( 2  x.  x
) ) )
115 dvdsval3 14386 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  e.  NN  /\  ( Q  x.  (
2  x.  x ) )  e.  ZZ )  ->  ( P  ||  ( Q  x.  (
2  x.  x ) )  <->  ( ( Q  x.  ( 2  x.  x ) )  mod 
P )  =  0 ) )
11625, 20, 115syl2anc 673 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( Q  x.  ( 2  x.  x
) )  <->  ( ( Q  x.  ( 2  x.  x ) )  mod  P )  =  0 ) )
117114, 116mtbid 307 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  ( ( Q  x.  ( 2  x.  x
) )  mod  P
)  =  0 )
11810eqeq1i 2476 . . . . . . . . . . . . . . . . . . 19  |-  ( R  =  0  <->  ( ( Q  x.  ( 2  x.  x ) )  mod  P )  =  0 )
119117, 118sylnibr 312 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  R  =  0 )
12089nnnn0d 10949 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  NN0 )
121 nn0uz 11217 . . . . . . . . . . . . . . . . . . . . . 22  |-  NN0  =  ( ZZ>= `  0 )
122120, 121syl6eleq 2559 . . . . . . . . . . . . . . . . . . . . 21  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  ( ZZ>= `  0
) )
123 elfzp12 11899 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( P  -  1 )  e.  ( ZZ>= `  0
)  ->  ( R  e.  ( 0 ... ( P  -  1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
124122, 123syl 17 . . . . . . . . . . . . . . . . . . . 20  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  e.  ( 0 ... ( P  - 
1 ) )  <->  ( R  =  0  \/  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) ) ) )
12528, 124mpbid 215 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  =  0  \/  R  e.  ( (
0  +  1 ) ... ( P  - 
1 ) ) ) )
126125ord 384 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -.  R  =  0  ->  R  e.  ( ( 0  +  1 ) ... ( P  - 
1 ) ) ) )
127119, 126mpd 15 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ( ( 0  +  1 ) ... ( P  -  1 ) ) )
128 1e0p1 11102 . . . . . . . . . . . . . . . . . 18  |-  1  =  ( 0  +  1 )
129128oveq1i 6318 . . . . . . . . . . . . . . . . 17  |-  ( 1 ... ( P  - 
1 ) )  =  ( ( 0  +  1 ) ... ( P  -  1 ) )
130127, 129syl6eleqr 2560 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  ( 1 ... ( P  -  1 ) ) )
131 elfznn 11854 . . . . . . . . . . . . . . . 16  |-  ( R  e.  ( 1 ... ( P  -  1 ) )  ->  R  e.  NN )
132130, 131syl 17 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  NN )
133132nnrpd 11362 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  R  e.  RR+ )
13474, 133ltsubrpd 11393 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  R )  <  P )
135 modid 12154 . . . . . . . . . . . . 13  |-  ( ( ( ( P  -  R )  e.  RR  /\  P  e.  RR+ )  /\  ( 0  <_  ( P  -  R )  /\  ( P  -  R
)  <  P )
)  ->  ( ( P  -  R )  mod  P )  =  ( P  -  R ) )
13675, 50, 78, 134, 135syl22anc 1293 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  -  R
)  mod  P )  =  ( P  -  R ) )
13770, 73, 1363eqtr3d 2513 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u R  mod  P )  =  ( P  -  R ) )
138137adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( -u R  mod  P
)  =  ( P  -  R ) )
139 ax-1cn 9615 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
140139a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
1  e.  CC )
141132adantr 472 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  R  e.  NN )
1425a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  e.  ZZ )
14335a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  2  =/=  0 )
14431peano2zd 11066 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( R  +  1 )  e.  ZZ )
145 dvdsval2 14385 . . . . . . . . . . . . . . . . . 18  |-  ( ( 2  e.  ZZ  /\  2  =/=  0  /\  ( R  +  1 )  e.  ZZ )  -> 
( 2  ||  ( R  +  1 )  <-> 
( ( R  + 
1 )  /  2
)  e.  ZZ ) )
146142, 143, 144, 145syl3anc 1292 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
2  ||  ( R  +  1 )  <->  ( ( R  +  1 )  /  2 )  e.  ZZ ) )
147146biimpar 493 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
2  ||  ( R  +  1 ) )
14831adantr 472 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  R  e.  ZZ )
14979a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
2  e.  NN )
150 1lt2 10799 . . . . . . . . . . . . . . . . . 18  |-  1  <  2
151150a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
1  <  2 )
152 ndvdsp1 14469 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e.  ZZ  /\  2  e.  NN  /\  1  <  2 )  ->  (
2  ||  R  ->  -.  2  ||  ( R  +  1 ) ) )
153148, 149, 151, 152syl3anc 1292 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( 2  ||  R  ->  -.  2  ||  ( R  +  1 ) ) )
154147, 153mt2d 121 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  -.  2  ||  R )
155 oexpneg 14446 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  R  e.  NN  /\  -.  2  ||  R )  -> 
( -u 1 ^ R
)  =  -u (
1 ^ R ) )
156140, 141, 154, 155syl3anc 1292 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( -u 1 ^ R
)  =  -u (
1 ^ R ) )
157 1exp 12339 . . . . . . . . . . . . . . . 16  |-  ( R  e.  ZZ  ->  (
1 ^ R )  =  1 )
158148, 157syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( 1 ^ R
)  =  1 )
159158negeqd 9889 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  -u ( 1 ^ R
)  =  -u 1
)
160156, 159eqtrd 2505 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( -u 1 ^ R
)  =  -u 1
)
161160oveq1d 6323 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( -u 1 ^ R )  x.  R
)  =  ( -u
1  x.  R ) )
16232adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  R  e.  CC )
163162mulm1d 10091 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( -u 1  x.  R
)  =  -u R
)
164161, 163eqtrd 2505 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( -u 1 ^ R )  x.  R
)  =  -u R
)
165164oveq1d 6323 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  (
-u R  mod  P
) )
16662adantr 472 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  ->  P  e.  CC )
167166, 162, 140pnpcan2d 10043 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  + 
1 )  -  ( R  +  1 ) )  =  ( P  -  R ) )
168138, 165, 1673eqtr4d 2515 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  ( ( P  +  1 )  -  ( R  +  1 ) ) )
169168oveq1d 6323 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  =  ( ( ( P  + 
1 )  -  ( R  +  1 ) )  /  2 ) )
170 peano2cn 9823 . . . . . . . . . 10  |-  ( P  e.  CC  ->  ( P  +  1 )  e.  CC )
171166, 170syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( P  +  1 )  e.  CC )
172 peano2cn 9823 . . . . . . . . . 10  |-  ( R  e.  CC  ->  ( R  +  1 )  e.  CC )
173162, 172syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( R  +  1 )  e.  CC )
174 2cnd 10704 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
2  e.  CC )
17535a1i 11 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
2  =/=  0 )
176171, 173, 174, 175divsubdird 10444 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  +  1 )  -  ( R  +  1
) )  /  2
)  =  ( ( ( P  +  1 )  /  2 )  -  ( ( R  +  1 )  / 
2 ) ) )
177169, 176eqtrd 2505 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  =  ( ( ( P  + 
1 )  /  2
)  -  ( ( R  +  1 )  /  2 ) ) )
178166, 140, 174subadd23d 10027 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  - 
1 )  +  2 )  =  ( P  +  ( 2  -  1 ) ) )
179 2m1e1 10746 . . . . . . . . . . . . 13  |-  ( 2  -  1 )  =  1
180179oveq2i 6319 . . . . . . . . . . . 12  |-  ( P  +  ( 2  -  1 ) )  =  ( P  +  1 )
181178, 180syl6req 2522 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( P  +  1 )  =  ( ( P  -  1 )  +  2 ) )
182181oveq1d 6323 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  + 
1 )  /  2
)  =  ( ( ( P  -  1 )  +  2 )  /  2 ) )
18389nncnd 10647 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  -  1 )  e.  CC )
184183adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( P  -  1 )  e.  CC )
185184, 174, 174, 175divdird 10443 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  -  1 )  +  2 )  /  2
)  =  ( ( ( P  -  1 )  /  2 )  +  ( 2  / 
2 ) ) )
186 2div2e1 10755 . . . . . . . . . . . 12  |-  ( 2  /  2 )  =  1
187186oveq2i 6319 . . . . . . . . . . 11  |-  ( ( ( P  -  1 )  /  2 )  +  ( 2  / 
2 ) )  =  ( ( ( P  -  1 )  / 
2 )  +  1 )
188185, 187syl6eq 2521 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  -  1 )  +  2 )  /  2
)  =  ( ( ( P  -  1 )  /  2 )  +  1 ) )
189182, 188eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  + 
1 )  /  2
)  =  ( ( ( P  -  1 )  /  2 )  +  1 ) )
190 oddprm 14844 . . . . . . . . . . . . 13  |-  ( P  e.  ( Prime  \  {
2 } )  -> 
( ( P  - 
1 )  /  2
)  e.  NN )
19122, 190syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  -  1 )  /  2 )  e.  NN )
192191nnzd 11062 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( P  -  1 )  /  2 )  e.  ZZ )
193192adantr 472 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  - 
1 )  /  2
)  e.  ZZ )
194193peano2zd 11066 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  -  1 )  / 
2 )  +  1 )  e.  ZZ )
195189, 194eqeltrd 2549 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( P  + 
1 )  /  2
)  e.  ZZ )
196 simpr 468 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( R  + 
1 )  /  2
)  e.  ZZ )
197195, 196zsubcld 11068 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( P  +  1 )  / 
2 )  -  (
( R  +  1 )  /  2 ) )  e.  ZZ )
198177, 197eqeltrd 2549 . . . . . 6  |-  ( ( ( ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  /\  (
( R  +  1 )  /  2 )  e.  ZZ )  -> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  e.  ZZ )
199 zeo 11044 . . . . . . 7  |-  ( R  e.  ZZ  ->  (
( R  /  2
)  e.  ZZ  \/  ( ( R  + 
1 )  /  2
)  e.  ZZ ) )
20031, 199syl 17 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( R  /  2
)  e.  ZZ  \/  ( ( R  + 
1 )  /  2
)  e.  ZZ ) )
20161, 198, 200mpjaodan 803 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ZZ )
202 m1expcl 12333 . . . . . . . . . 10  |-  ( R  e.  ZZ  ->  ( -u 1 ^ R )  e.  ZZ )
20331, 202syl 17 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  ZZ )
204203, 31zmulcld 11069 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  R )  e.  ZZ )
205204, 25zmodcld 12150 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN0 )
206205nn0red 10950 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  RR )
207 fzm1ndvds 14434 . . . . . . . . . . . 12  |-  ( ( P  e.  NN  /\  R  e.  ( 1 ... ( P  - 
1 ) ) )  ->  -.  P  ||  R
)
20825, 130, 207syl2anc 673 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  R )
209 ax-1ne0 9626 . . . . . . . . . . . . . . . . . . . 20  |-  1  =/=  0
210 divneg2 10353 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 1  e.  CC  /\  1  e.  CC  /\  1  =/=  0 )  ->  -u (
1  /  1 )  =  ( 1  /  -u 1 ) )
211139, 139, 209, 210mp3an 1390 . . . . . . . . . . . . . . . . . . 19  |-  -u (
1  /  1 )  =  ( 1  /  -u 1 )
212 1div1e1 10322 . . . . . . . . . . . . . . . . . . . 20  |-  ( 1  /  1 )  =  1
213212negeqi 9888 . . . . . . . . . . . . . . . . . . 19  |-  -u (
1  /  1 )  =  -u 1
214211, 213eqtr3i 2495 . . . . . . . . . . . . . . . . . 18  |-  ( 1  /  -u 1 )  = 
-u 1
215214oveq1i 6318 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  /  -u 1
) ^ R )  =  ( -u 1 ^ R )
2161a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u 1  e.  CC )
2173a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -u 1  =/=  0 )
218216, 217, 31exprecd 12462 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( 1  /  -u 1
) ^ R )  =  ( 1  / 
( -u 1 ^ R
) ) )
219215, 218syl5eqr 2519 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  =  ( 1  / 
( -u 1 ^ R
) ) )
220219oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  ( -u
1 ^ R ) )  =  ( (
-u 1 ^ R
)  x.  ( 1  /  ( -u 1 ^ R ) ) ) )
221203zcnd 11064 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  e.  CC )
222216, 217, 31expne0d 12460 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -u 1 ^ R )  =/=  0 )
223221, 222recidd 10400 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  ( 1  /  ( -u 1 ^ R ) ) )  =  1 )
224220, 223eqtrd 2505 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  ( -u
1 ^ R ) )  =  1 )
225224oveq1d 6323 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  ( -u 1 ^ R ) )  x.  R )  =  ( 1  x.  R ) )
226221, 221, 32mulassd 9684 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  ( -u 1 ^ R ) )  x.  R )  =  ( ( -u
1 ^ R )  x.  ( ( -u
1 ^ R )  x.  R ) ) )
22732mulid2d 9679 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
1  x.  R )  =  R )
228225, 226, 2273eqtr3d 2513 . . . . . . . . . . . 12  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( -u 1 ^ R
)  x.  ( (
-u 1 ^ R
)  x.  R ) )  =  R )
229228breq2d 4407 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( ( -u
1 ^ R )  x.  ( ( -u
1 ^ R )  x.  R ) )  <-> 
P  ||  R )
)
230208, 229mtbird 308 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( ( -u
1 ^ R )  x.  ( ( -u
1 ^ R )  x.  R ) ) )
231 dvdsmultr2 14417 . . . . . . . . . . 11  |-  ( ( P  e.  ZZ  /\  ( -u 1 ^ R
)  e.  ZZ  /\  ( ( -u 1 ^ R )  x.  R
)  e.  ZZ )  ->  ( P  ||  ( ( -u 1 ^ R )  x.  R
)  ->  P  ||  (
( -u 1 ^ R
)  x.  ( (
-u 1 ^ R
)  x.  R ) ) ) )
23299, 203, 204, 231syl3anc 1292 . . . . . . . . . 10  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( ( -u
1 ^ R )  x.  R )  ->  P  ||  ( ( -u
1 ^ R )  x.  ( ( -u
1 ^ R )  x.  R ) ) ) )
233230, 232mtod 182 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  P  ||  ( ( -u
1 ^ R )  x.  R ) )
234 dvdsval3 14386 . . . . . . . . . 10  |-  ( ( P  e.  NN  /\  ( ( -u 1 ^ R )  x.  R
)  e.  ZZ )  ->  ( P  ||  ( ( -u 1 ^ R )  x.  R
)  <->  ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  =  0 ) )
23525, 204, 234syl2anc 673 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( P  ||  ( ( -u
1 ^ R )  x.  R )  <->  ( (
( -u 1 ^ R
)  x.  R )  mod  P )  =  0 ) )
236233, 235mtbid 307 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  -.  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  0 )
237 elnn0 10895 . . . . . . . . . 10  |-  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN0  <->  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN  \/  ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  =  0 ) )
238205, 237sylib 201 . . . . . . . . 9  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  NN  \/  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  0 ) )
239238ord 384 . . . . . . . 8  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  ( -.  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  NN  ->  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  =  0 ) )
240236, 239mt3d 130 . . . . . . 7  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  NN )
241240nngt0d 10675 . . . . . 6  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <  ( ( ( -u
1 ^ R )  x.  R )  mod 
P ) )
242206, 92, 241, 94divgt0d 10564 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  0  <  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
243 elnnz 10971 . . . . 5  |-  ( ( ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  NN  <->  ( (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ZZ  /\  0  <  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 ) ) )
244201, 242, 243sylanbrc 677 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  NN )
245244nnge1d 10674 . . 3  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  1  <_  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
246 zmodfz 12151 . . . . . 6  |-  ( ( ( ( -u 1 ^ R )  x.  R
)  e.  ZZ  /\  P  e.  NN )  ->  ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  ( 0 ... ( P  -  1 ) ) )
247204, 25, 246syl2anc 673 . . . . 5  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  ( 0 ... ( P  -  1 ) ) )
248 elfzle2 11829 . . . . 5  |-  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  e.  ( 0 ... ( P  -  1 ) )  ->  ( (
( -u 1 ^ R
)  x.  R )  mod  P )  <_ 
( P  -  1 ) )
249247, 248syl 17 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( -u 1 ^ R )  x.  R
)  mod  P )  <_  ( P  -  1 ) )
250 lediv1 10492 . . . . 5  |-  ( ( ( ( ( -u
1 ^ R )  x.  R )  mod 
P )  e.  RR  /\  ( P  -  1 )  e.  RR  /\  ( 2  e.  RR  /\  0  <  2 ) )  ->  ( (
( ( -u 1 ^ R )  x.  R
)  mod  P )  <_  ( P  -  1 )  <->  ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  <_ 
( ( P  - 
1 )  /  2
) ) )
251206, 90, 92, 94, 250syl112anc 1296 . . . 4  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  <_  ( P  -  1 )  <-> 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  <_  (
( P  -  1 )  /  2 ) ) )
252249, 251mpbid 215 . . 3  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  <_  ( ( P  -  1 )  /  2 ) )
253 elfz 11816 . . . 4  |-  ( ( ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  e.  ZZ  /\  1  e.  ZZ  /\  ( ( P  - 
1 )  /  2
)  e.  ZZ )  ->  ( ( ( ( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  e.  ( 1 ... (
( P  -  1 )  /  2 ) )  <->  ( 1  <_ 
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  /\  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  <_  ( ( P  -  1 )  /  2 ) ) ) )
254201, 71, 192, 253syl3anc 1292 . . 3  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 )  e.  ( 1 ... ( ( P  -  1 )  /  2 ) )  <-> 
( 1  <_  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  /\  ( (
( ( -u 1 ^ R )  x.  R
)  mod  P )  /  2 )  <_ 
( ( P  - 
1 )  /  2
) ) ) )
255245, 252, 254mpbir2and 936 . 2  |-  ( (
ph  /\  x  e.  ( 1 ... (
( P  -  1 )  /  2 ) ) )  ->  (
( ( ( -u
1 ^ R )  x.  R )  mod 
P )  /  2
)  e.  ( 1 ... ( ( P  -  1 )  / 
2 ) ) )
256 lgseisen.5 . 2  |-  M  =  ( x  e.  ( 1 ... ( ( P  -  1 )  /  2 ) ) 
|->  ( ( ( (
-u 1 ^ R
)  x.  R )  mod  P )  / 
2 ) )
257255, 256fmptd 6061 1  |-  ( ph  ->  M : ( 1 ... ( ( P  -  1 )  / 
2 ) ) --> ( 1 ... ( ( P  -  1 )  /  2 ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    \/ wo 375    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641    \ cdif 3387   {csn 3959   class class class wbr 4395    |-> cmpt 4454   -->wf 5585   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    < clt 9693    <_ cle 9694    - cmin 9880   -ucneg 9881    / cdiv 10291   NNcn 10631   2c2 10681   NN0cn0 10893   ZZcz 10961   ZZ>=cuz 11182   RR+crp 11325   ...cfz 11810    mod cmo 12129   ^cexp 12310    || cdvds 14382    gcd cgcd 14547   Primecprime 14701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-rp 11326  df-fz 11811  df-fl 12061  df-mod 12130  df-seq 12252  df-exp 12311  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-dvds 14383  df-gcd 14548  df-prm 14702
This theorem is referenced by:  lgseisenlem2  24357  lgseisenlem3  24358
  Copyright terms: Public domain W3C validator