MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem5 Structured version   Unicode version

Theorem lgsdir2lem5 23474
Description: Lemma for lgsdir2 23475. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )

Proof of Theorem lgsdir2lem5
StepHypRef Expression
1 ovex 6309 . . . . . . 7  |-  ( A  mod  8 )  e. 
_V
21elpr 4032 . . . . . 6  |-  ( ( A  mod  8 )  e.  { 3 ,  5 }  <->  ( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 ) )
3 ovex 6309 . . . . . . 7  |-  ( B  mod  8 )  e. 
_V
43elpr 4032 . . . . . 6  |-  ( ( B  mod  8 )  e.  { 3 ,  5 }  <->  ( ( B  mod  8 )  =  3  \/  ( B  mod  8 )  =  5 ) )
52, 4anbi12i 697 . . . . 5  |-  ( ( ( A  mod  8
)  e.  { 3 ,  5 }  /\  ( B  mod  8
)  e.  { 3 ,  5 } )  <-> 
( ( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 )  /\  (
( B  mod  8
)  =  3  \/  ( B  mod  8
)  =  5 ) ) )
6 simpll 753 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  ->  A  e.  ZZ )
7 3z 10903 . . . . . . . . . 10  |-  3  e.  ZZ
87a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
3  e.  ZZ )
9 simplr 755 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  ->  B  e.  ZZ )
10 8re 10626 . . . . . . . . . . 11  |-  8  e.  RR
11 8pos 10642 . . . . . . . . . . 11  |-  0  <  8
1210, 11elrpii 11232 . . . . . . . . . 10  |-  8  e.  RR+
1312a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
8  e.  RR+ )
14 simprl 756 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  3 )
15 lgsdir2lem1 23470 . . . . . . . . . . . 12  |-  ( ( ( 1  mod  8
)  =  1  /\  ( -u 1  mod  8 )  =  7 )  /\  ( ( 3  mod  8 )  =  3  /\  ( -u 3  mod  8 )  =  5 ) )
1615simpri 462 . . . . . . . . . . 11  |-  ( ( 3  mod  8 )  =  3  /\  ( -u 3  mod  8 )  =  5 )
1716simpli 458 . . . . . . . . . 10  |-  ( 3  mod  8 )  =  3
1814, 17syl6eqr 2502 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  ( 3  mod  8 ) )
19 simprr 757 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  3 )
2019, 17syl6eqr 2502 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  ( 3  mod  8 ) )
216, 8, 9, 8, 13, 18, 20modmul12d 12020 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 ) )
2221orcd 392 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
2322ex 434 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
24 simpll 753 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  A  e.  ZZ )
25 znegcl 10905 . . . . . . . . . . 11  |-  ( 3  e.  ZZ  ->  -u 3  e.  ZZ )
267, 25mp1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  -u 3  e.  ZZ )
27 simplr 755 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  B  e.  ZZ )
287a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
3  e.  ZZ )
2912a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
8  e.  RR+ )
30 simprl 756 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  5 )
3116simpri 462 . . . . . . . . . . 11  |-  ( -u
3  mod  8 )  =  5
3230, 31syl6eqr 2502 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  ( -u
3  mod  8 ) )
33 simprr 757 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  3 )
3433, 17syl6eqr 2502 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  ( 3  mod  8 ) )
3524, 26, 27, 28, 29, 32, 34modmul12d 12020 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( (
-u 3  x.  3 )  mod  8 ) )
36 3cn 10616 . . . . . . . . . . 11  |-  3  e.  CC
3736, 36mulneg1i 10008 . . . . . . . . . 10  |-  ( -u
3  x.  3 )  =  -u ( 3  x.  3 )
3837oveq1i 6291 . . . . . . . . 9  |-  ( (
-u 3  x.  3 )  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
3935, 38syl6eq 2500 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) )
4039olcd 393 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
4140ex 434 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
42 simpll 753 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  A  e.  ZZ )
437a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
3  e.  ZZ )
44 simplr 755 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  B  e.  ZZ )
457, 25mp1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  -u 3  e.  ZZ )
4612a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
8  e.  RR+ )
47 simprl 756 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  3 )
4847, 17syl6eqr 2502 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  ( 3  mod  8 ) )
49 simprr 757 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  5 )
5049, 31syl6eqr 2502 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  ( -u
3  mod  8 ) )
5142, 43, 44, 45, 46, 48, 50modmul12d 12020 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  -u 3
)  mod  8 ) )
5236, 36mulneg2i 10009 . . . . . . . . . 10  |-  ( 3  x.  -u 3 )  = 
-u ( 3  x.  3 )
5352oveq1i 6291 . . . . . . . . 9  |-  ( ( 3  x.  -u 3
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
5451, 53syl6eq 2500 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) )
5554olcd 393 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
5655ex 434 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
57 simpll 753 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  A  e.  ZZ )
587, 25mp1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  -u 3  e.  ZZ )
59 simplr 755 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  B  e.  ZZ )
6012a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
8  e.  RR+ )
61 simprl 756 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  5 )
6261, 31syl6eqr 2502 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  ( -u
3  mod  8 ) )
63 simprr 757 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  5 )
6463, 31syl6eqr 2502 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  ( -u
3  mod  8 ) )
6557, 58, 59, 58, 60, 62, 64modmul12d 12020 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( (
-u 3  x.  -u 3
)  mod  8 ) )
6636, 36mul2negi 10010 . . . . . . . . . 10  |-  ( -u
3  x.  -u 3
)  =  ( 3  x.  3 )
6766oveq1i 6291 . . . . . . . . 9  |-  ( (
-u 3  x.  -u 3
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )
6865, 67syl6eq 2500 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 ) )
6968orcd 392 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
7069ex 434 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
7123, 41, 56, 70ccased 947 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 )  /\  (
( B  mod  8
)  =  3  \/  ( B  mod  8
)  =  5 ) )  ->  ( (
( A  x.  B
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  (
( A  x.  B
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 ) ) ) )
725, 71syl5bi 217 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
7372imp 429 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
74 ovex 6309 . . . 4  |-  ( ( A  x.  B )  mod  8 )  e. 
_V
7574elpr 4032 . . 3  |-  ( ( ( A  x.  B
)  mod  8 )  e.  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u ( 3  x.  3 )  mod  8 ) }  <->  ( (
( A  x.  B
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  (
( A  x.  B
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 ) ) )
7673, 75sylibr 212 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u (
3  x.  3 )  mod  8 ) } )
77 df-9 10607 . . . . . . . 8  |-  9  =  ( 8  +  1 )
78 8cn 10627 . . . . . . . . 9  |-  8  e.  CC
79 ax-1cn 9553 . . . . . . . . 9  |-  1  e.  CC
8078, 79addcomi 9774 . . . . . . . 8  |-  ( 8  +  1 )  =  ( 1  +  8 )
8177, 80eqtri 2472 . . . . . . 7  |-  9  =  ( 1  +  8 )
82 3t3e9 10694 . . . . . . 7  |-  ( 3  x.  3 )  =  9
8378mulid2i 9602 . . . . . . . 8  |-  ( 1  x.  8 )  =  8
8483oveq2i 6292 . . . . . . 7  |-  ( 1  +  ( 1  x.  8 ) )  =  ( 1  +  8 )
8581, 82, 843eqtr4i 2482 . . . . . 6  |-  ( 3  x.  3 )  =  ( 1  +  ( 1  x.  8 ) )
8685oveq1i 6291 . . . . 5  |-  ( ( 3  x.  3 )  mod  8 )  =  ( ( 1  +  ( 1  x.  8 ) )  mod  8
)
87 1re 9598 . . . . . 6  |-  1  e.  RR
88 1z 10900 . . . . . 6  |-  1  e.  ZZ
89 modcyc 12010 . . . . . 6  |-  ( ( 1  e.  RR  /\  8  e.  RR+  /\  1  e.  ZZ )  ->  (
( 1  +  ( 1  x.  8 ) )  mod  8 )  =  ( 1  mod  8 ) )
9087, 12, 88, 89mp3an 1325 . . . . 5  |-  ( ( 1  +  ( 1  x.  8 ) )  mod  8 )  =  ( 1  mod  8
)
9186, 90eqtri 2472 . . . 4  |-  ( ( 3  x.  3 )  mod  8 )  =  ( 1  mod  8
)
9215simpli 458 . . . . 5  |-  ( ( 1  mod  8 )  =  1  /\  ( -u 1  mod  8 )  =  7 )
9392simpli 458 . . . 4  |-  ( 1  mod  8 )  =  1
9491, 93eqtri 2472 . . 3  |-  ( ( 3  x.  3 )  mod  8 )  =  1
95 znegcl 10905 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
9688, 95mp1i 12 . . . . . . 7  |-  ( T. 
->  -u 1  e.  ZZ )
97 3nn 10700 . . . . . . . . . 10  |-  3  e.  NN
9897, 97nnmulcli 10566 . . . . . . . . 9  |-  ( 3  x.  3 )  e.  NN
9998nnzi 10894 . . . . . . . 8  |-  ( 3  x.  3 )  e.  ZZ
10099a1i 11 . . . . . . 7  |-  ( T. 
->  ( 3  x.  3 )  e.  ZZ )
10188a1i 11 . . . . . . 7  |-  ( T. 
->  1  e.  ZZ )
10212a1i 11 . . . . . . 7  |-  ( T. 
->  8  e.  RR+ )
103 eqidd 2444 . . . . . . 7  |-  ( T. 
->  ( -u 1  mod  8 )  =  (
-u 1  mod  8
) )
10491a1i 11 . . . . . . 7  |-  ( T. 
->  ( ( 3  x.  3 )  mod  8
)  =  ( 1  mod  8 ) )
10596, 96, 100, 101, 102, 103, 104modmul12d 12020 . . . . . 6  |-  ( T. 
->  ( ( -u 1  x.  ( 3  x.  3 ) )  mod  8
)  =  ( (
-u 1  x.  1 )  mod  8 ) )
106105trud 1392 . . . . 5  |-  ( (
-u 1  x.  (
3  x.  3 ) )  mod  8 )  =  ( ( -u
1  x.  1 )  mod  8 )
10736, 36mulcli 9604 . . . . . . 7  |-  ( 3  x.  3 )  e.  CC
108107mulm1i 10007 . . . . . 6  |-  ( -u
1  x.  ( 3  x.  3 ) )  =  -u ( 3  x.  3 )
109108oveq1i 6291 . . . . 5  |-  ( (
-u 1  x.  (
3  x.  3 ) )  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
11079mulm1i 10007 . . . . . 6  |-  ( -u
1  x.  1 )  =  -u 1
111110oveq1i 6291 . . . . 5  |-  ( (
-u 1  x.  1 )  mod  8 )  =  ( -u 1  mod  8 )
112106, 109, 1113eqtr3i 2480 . . . 4  |-  ( -u ( 3  x.  3 )  mod  8 )  =  ( -u 1  mod  8 )
11392simpri 462 . . . 4  |-  ( -u
1  mod  8 )  =  7
114112, 113eqtri 2472 . . 3  |-  ( -u ( 3  x.  3 )  mod  8 )  =  7
11594, 114preq12i 4099 . 2  |-  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u (
3  x.  3 )  mod  8 ) }  =  { 1 ,  7 }
11676, 115syl6eleq 2541 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1383   T. wtru 1384    e. wcel 1804   {cpr 4016  (class class class)co 6281   RRcr 9494   1c1 9496    + caddc 9498    x. cmul 9500   -ucneg 9811   3c3 10592   5c5 10594   7c7 10596   8c8 10597   9c9 10598   ZZcz 10870   RR+crp 11229    mod cmo 11975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572  ax-pre-sup 9573
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-sup 7903  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-div 10213  df-nn 10543  df-2 10600  df-3 10601  df-4 10602  df-5 10603  df-6 10604  df-7 10605  df-8 10606  df-9 10607  df-n0 10802  df-z 10871  df-uz 11091  df-rp 11230  df-fl 11908  df-mod 11976
This theorem is referenced by:  lgsdir2  23475
  Copyright terms: Public domain W3C validator