MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem5 Structured version   Unicode version

Theorem lgsdir2lem5 22646
Description: Lemma for lgsdir2 22647. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir2lem5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )

Proof of Theorem lgsdir2lem5
StepHypRef Expression
1 ovex 6111 . . . . . . 7  |-  ( A  mod  8 )  e. 
_V
21elpr 3890 . . . . . 6  |-  ( ( A  mod  8 )  e.  { 3 ,  5 }  <->  ( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 ) )
3 ovex 6111 . . . . . . 7  |-  ( B  mod  8 )  e. 
_V
43elpr 3890 . . . . . 6  |-  ( ( B  mod  8 )  e.  { 3 ,  5 }  <->  ( ( B  mod  8 )  =  3  \/  ( B  mod  8 )  =  5 ) )
52, 4anbi12i 697 . . . . 5  |-  ( ( ( A  mod  8
)  e.  { 3 ,  5 }  /\  ( B  mod  8
)  e.  { 3 ,  5 } )  <-> 
( ( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 )  /\  (
( B  mod  8
)  =  3  \/  ( B  mod  8
)  =  5 ) ) )
6 simpll 753 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  ->  A  e.  ZZ )
7 3z 10671 . . . . . . . . . 10  |-  3  e.  ZZ
87a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
3  e.  ZZ )
9 simplr 754 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  ->  B  e.  ZZ )
10 8re 10398 . . . . . . . . . . 11  |-  8  e.  RR
11 8pos 10414 . . . . . . . . . . 11  |-  0  <  8
1210, 11elrpii 10986 . . . . . . . . . 10  |-  8  e.  RR+
1312a1i 11 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
8  e.  RR+ )
14 simprl 755 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  3 )
15 lgsdir2lem1 22642 . . . . . . . . . . . 12  |-  ( ( ( 1  mod  8
)  =  1  /\  ( -u 1  mod  8 )  =  7 )  /\  ( ( 3  mod  8 )  =  3  /\  ( -u 3  mod  8 )  =  5 ) )
1615simpri 462 . . . . . . . . . . 11  |-  ( ( 3  mod  8 )  =  3  /\  ( -u 3  mod  8 )  =  5 )
1716simpli 458 . . . . . . . . . 10  |-  ( 3  mod  8 )  =  3
1814, 17syl6eqr 2488 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  ( 3  mod  8 ) )
19 simprr 756 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  3 )
2019, 17syl6eqr 2488 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  ( 3  mod  8 ) )
216, 8, 9, 8, 13, 18, 20modmul12d 11745 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 ) )
2221orcd 392 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
2322ex 434 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  3 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
24 simpll 753 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  A  e.  ZZ )
25 znegcl 10672 . . . . . . . . . . 11  |-  ( 3  e.  ZZ  ->  -u 3  e.  ZZ )
267, 25mp1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  -u 3  e.  ZZ )
27 simplr 754 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  ->  B  e.  ZZ )
287a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
3  e.  ZZ )
2912a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
8  e.  RR+ )
30 simprl 755 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  5 )
3116simpri 462 . . . . . . . . . . 11  |-  ( -u
3  mod  8 )  =  5
3230, 31syl6eqr 2488 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( A  mod  8
)  =  ( -u
3  mod  8 ) )
33 simprr 756 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  3 )
3433, 17syl6eqr 2488 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( B  mod  8
)  =  ( 3  mod  8 ) )
3524, 26, 27, 28, 29, 32, 34modmul12d 11745 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( (
-u 3  x.  3 )  mod  8 ) )
36 3cn 10388 . . . . . . . . . . 11  |-  3  e.  CC
3736, 36mulneg1i 9782 . . . . . . . . . 10  |-  ( -u
3  x.  3 )  =  -u ( 3  x.  3 )
3837oveq1i 6096 . . . . . . . . 9  |-  ( (
-u 3  x.  3 )  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
3935, 38syl6eq 2486 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) )
4039olcd 393 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
4140ex 434 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  3 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
42 simpll 753 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  A  e.  ZZ )
437a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
3  e.  ZZ )
44 simplr 754 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  B  e.  ZZ )
457, 25mp1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  ->  -u 3  e.  ZZ )
4612a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
8  e.  RR+ )
47 simprl 755 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  3 )
4847, 17syl6eqr 2488 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  ( 3  mod  8 ) )
49 simprr 756 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  5 )
5049, 31syl6eqr 2488 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  ( -u
3  mod  8 ) )
5142, 43, 44, 45, 46, 48, 50modmul12d 11745 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  -u 3
)  mod  8 ) )
5236, 36mulneg2i 9783 . . . . . . . . . 10  |-  ( 3  x.  -u 3 )  = 
-u ( 3  x.  3 )
5352oveq1i 6096 . . . . . . . . 9  |-  ( ( 3  x.  -u 3
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
5451, 53syl6eq 2486 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) )
5554olcd 393 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
5655ex 434 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  3  /\  ( B  mod  8 )  =  5 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
57 simpll 753 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  A  e.  ZZ )
587, 25mp1i 12 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  -u 3  e.  ZZ )
59 simplr 754 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  ->  B  e.  ZZ )
6012a1i 11 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
8  e.  RR+ )
61 simprl 755 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  5 )
6261, 31syl6eqr 2488 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( A  mod  8
)  =  ( -u
3  mod  8 ) )
63 simprr 756 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  5 )
6463, 31syl6eqr 2488 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( B  mod  8
)  =  ( -u
3  mod  8 ) )
6557, 58, 59, 58, 60, 62, 64modmul12d 11745 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( (
-u 3  x.  -u 3
)  mod  8 ) )
6636, 36mul2negi 9784 . . . . . . . . . 10  |-  ( -u
3  x.  -u 3
)  =  ( 3  x.  3 )
6766oveq1i 6096 . . . . . . . . 9  |-  ( (
-u 3  x.  -u 3
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )
6865, 67syl6eq 2486 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 ) )
6968orcd 392 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
7069ex 434 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  =  5  /\  ( B  mod  8 )  =  5 )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
7123, 41, 56, 70ccased 938 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( ( A  mod  8 )  =  3  \/  ( A  mod  8 )  =  5 )  /\  (
( B  mod  8
)  =  3  \/  ( B  mod  8
)  =  5 ) )  ->  ( (
( A  x.  B
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  (
( A  x.  B
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 ) ) ) )
725, 71syl5bi 217 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } )  ->  (
( ( A  x.  B )  mod  8
)  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8
)  =  ( -u ( 3  x.  3 )  mod  8 ) ) ) )
7372imp 429 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( ( A  x.  B )  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  ( ( A  x.  B )  mod  8 )  =  (
-u ( 3  x.  3 )  mod  8
) ) )
74 ovex 6111 . . . 4  |-  ( ( A  x.  B )  mod  8 )  e. 
_V
7574elpr 3890 . . 3  |-  ( ( ( A  x.  B
)  mod  8 )  e.  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u ( 3  x.  3 )  mod  8 ) }  <->  ( (
( A  x.  B
)  mod  8 )  =  ( ( 3  x.  3 )  mod  8 )  \/  (
( A  x.  B
)  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 ) ) )
7673, 75sylibr 212 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u (
3  x.  3 )  mod  8 ) } )
77 df-9 10379 . . . . . . . 8  |-  9  =  ( 8  +  1 )
78 8cn 10399 . . . . . . . . 9  |-  8  e.  CC
79 ax-1cn 9332 . . . . . . . . 9  |-  1  e.  CC
8078, 79addcomi 9552 . . . . . . . 8  |-  ( 8  +  1 )  =  ( 1  +  8 )
8177, 80eqtri 2458 . . . . . . 7  |-  9  =  ( 1  +  8 )
82 3t3e9 10466 . . . . . . 7  |-  ( 3  x.  3 )  =  9
8378mulid2i 9381 . . . . . . . 8  |-  ( 1  x.  8 )  =  8
8483oveq2i 6097 . . . . . . 7  |-  ( 1  +  ( 1  x.  8 ) )  =  ( 1  +  8 )
8581, 82, 843eqtr4i 2468 . . . . . 6  |-  ( 3  x.  3 )  =  ( 1  +  ( 1  x.  8 ) )
8685oveq1i 6096 . . . . 5  |-  ( ( 3  x.  3 )  mod  8 )  =  ( ( 1  +  ( 1  x.  8 ) )  mod  8
)
87 1re 9377 . . . . . 6  |-  1  e.  RR
88 1z 10668 . . . . . 6  |-  1  e.  ZZ
89 modcyc 11735 . . . . . 6  |-  ( ( 1  e.  RR  /\  8  e.  RR+  /\  1  e.  ZZ )  ->  (
( 1  +  ( 1  x.  8 ) )  mod  8 )  =  ( 1  mod  8 ) )
9087, 12, 88, 89mp3an 1314 . . . . 5  |-  ( ( 1  +  ( 1  x.  8 ) )  mod  8 )  =  ( 1  mod  8
)
9186, 90eqtri 2458 . . . 4  |-  ( ( 3  x.  3 )  mod  8 )  =  ( 1  mod  8
)
9215simpli 458 . . . . 5  |-  ( ( 1  mod  8 )  =  1  /\  ( -u 1  mod  8 )  =  7 )
9392simpli 458 . . . 4  |-  ( 1  mod  8 )  =  1
9491, 93eqtri 2458 . . 3  |-  ( ( 3  x.  3 )  mod  8 )  =  1
95 znegcl 10672 . . . . . . . 8  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
9688, 95mp1i 12 . . . . . . 7  |-  ( T. 
->  -u 1  e.  ZZ )
97 3nn 10472 . . . . . . . . . 10  |-  3  e.  NN
9897, 97nnmulcli 10338 . . . . . . . . 9  |-  ( 3  x.  3 )  e.  NN
9998nnzi 10662 . . . . . . . 8  |-  ( 3  x.  3 )  e.  ZZ
10099a1i 11 . . . . . . 7  |-  ( T. 
->  ( 3  x.  3 )  e.  ZZ )
10188a1i 11 . . . . . . 7  |-  ( T. 
->  1  e.  ZZ )
10212a1i 11 . . . . . . 7  |-  ( T. 
->  8  e.  RR+ )
103 eqidd 2439 . . . . . . 7  |-  ( T. 
->  ( -u 1  mod  8 )  =  (
-u 1  mod  8
) )
10491a1i 11 . . . . . . 7  |-  ( T. 
->  ( ( 3  x.  3 )  mod  8
)  =  ( 1  mod  8 ) )
10596, 96, 100, 101, 102, 103, 104modmul12d 11745 . . . . . 6  |-  ( T. 
->  ( ( -u 1  x.  ( 3  x.  3 ) )  mod  8
)  =  ( (
-u 1  x.  1 )  mod  8 ) )
106105trud 1378 . . . . 5  |-  ( (
-u 1  x.  (
3  x.  3 ) )  mod  8 )  =  ( ( -u
1  x.  1 )  mod  8 )
10736, 36mulcli 9383 . . . . . . 7  |-  ( 3  x.  3 )  e.  CC
108107mulm1i 9781 . . . . . 6  |-  ( -u
1  x.  ( 3  x.  3 ) )  =  -u ( 3  x.  3 )
109108oveq1i 6096 . . . . 5  |-  ( (
-u 1  x.  (
3  x.  3 ) )  mod  8 )  =  ( -u (
3  x.  3 )  mod  8 )
11079mulm1i 9781 . . . . . 6  |-  ( -u
1  x.  1 )  =  -u 1
111110oveq1i 6096 . . . . 5  |-  ( (
-u 1  x.  1 )  mod  8 )  =  ( -u 1  mod  8 )
112106, 109, 1113eqtr3i 2466 . . . 4  |-  ( -u ( 3  x.  3 )  mod  8 )  =  ( -u 1  mod  8 )
11392simpri 462 . . . 4  |-  ( -u
1  mod  8 )  =  7
114112, 113eqtri 2458 . . 3  |-  ( -u ( 3  x.  3 )  mod  8 )  =  7
11594, 114preq12i 3954 . 2  |-  { ( ( 3  x.  3 )  mod  8 ) ,  ( -u (
3  x.  3 )  mod  8 ) }  =  { 1 ,  7 }
11676, 115syl6eleq 2528 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( ( A  mod  8 )  e. 
{ 3 ,  5 }  /\  ( B  mod  8 )  e. 
{ 3 ,  5 } ) )  -> 
( ( A  x.  B )  mod  8
)  e.  { 1 ,  7 } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1369   T. wtru 1370    e. wcel 1756   {cpr 3874  (class class class)co 6086   RRcr 9273   1c1 9275    + caddc 9277    x. cmul 9279   -ucneg 9588   3c3 10364   5c5 10366   7c7 10368   8c8 10369   9c9 10370   ZZcz 10638   RR+crp 10983    mod cmo 11700
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-cnex 9330  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351  ax-pre-sup 9352
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-reu 2717  df-rmo 2718  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-pss 3339  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-tp 3877  df-op 3879  df-uni 4087  df-iun 4168  df-br 4288  df-opab 4346  df-mpt 4347  df-tr 4381  df-eprel 4627  df-id 4631  df-po 4636  df-so 4637  df-fr 4674  df-we 4676  df-ord 4717  df-on 4718  df-lim 4719  df-suc 4720  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-riota 6047  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-om 6472  df-recs 6824  df-rdg 6858  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-sup 7683  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590  df-div 9986  df-nn 10315  df-2 10372  df-3 10373  df-4 10374  df-5 10375  df-6 10376  df-7 10377  df-8 10378  df-9 10379  df-n0 10572  df-z 10639  df-uz 10854  df-rp 10984  df-fl 11634  df-mod 11701
This theorem is referenced by:  lgsdir2  22647
  Copyright terms: Public domain W3C validator