MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir2lem2 Structured version   Visualization version   Unicode version

Theorem lgsdir2lem2 24264
Description: Lemma for lgsdir2 24268. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsdir2lem2.1  |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) ) )
lgsdir2lem2.2  |-  M  =  ( K  +  1 )
lgsdir2lem2.3  |-  N  =  ( M  +  1 )
lgsdir2lem2.4  |-  N  e.  S
Assertion
Ref Expression
lgsdir2lem2  |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) ) )

Proof of Theorem lgsdir2lem2
StepHypRef Expression
1 lgsdir2lem2.3 . . 3  |-  N  =  ( M  +  1 )
2 lgsdir2lem2.2 . . . . 5  |-  M  =  ( K  +  1 )
3 lgsdir2lem2.1 . . . . . . 7  |-  ( K  e.  ZZ  /\  2  ||  ( K  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) ) )
43simp1i 1018 . . . . . 6  |-  K  e.  ZZ
5 peano2z 10985 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  +  1 )  e.  ZZ )
64, 5ax-mp 5 . . . . 5  |-  ( K  +  1 )  e.  ZZ
72, 6eqeltri 2527 . . . 4  |-  M  e.  ZZ
8 peano2z 10985 . . . 4  |-  ( M  e.  ZZ  ->  ( M  +  1 )  e.  ZZ )
97, 8ax-mp 5 . . 3  |-  ( M  +  1 )  e.  ZZ
101, 9eqeltri 2527 . 2  |-  N  e.  ZZ
113simp2i 1019 . . . 4  |-  2  ||  ( K  +  1 )
12 2z 10976 . . . . 5  |-  2  e.  ZZ
13 dvdsadd 14355 . . . . 5  |-  ( ( 2  e.  ZZ  /\  ( K  +  1
)  e.  ZZ )  ->  ( 2  ||  ( K  +  1
)  <->  2  ||  (
2  +  ( K  +  1 ) ) ) )
1412, 6, 13mp2an 679 . . . 4  |-  ( 2 
||  ( K  + 
1 )  <->  2  ||  ( 2  +  ( K  +  1 ) ) )
1511, 14mpbi 212 . . 3  |-  2  ||  ( 2  +  ( K  +  1 ) )
16 zcn 10949 . . . . . . . . . . 11  |-  ( K  e.  ZZ  ->  K  e.  CC )
174, 16ax-mp 5 . . . . . . . . . 10  |-  K  e.  CC
18 ax-1cn 9602 . . . . . . . . . 10  |-  1  e.  CC
1917, 18addcomi 9829 . . . . . . . . 9  |-  ( K  +  1 )  =  ( 1  +  K
)
202, 19eqtri 2475 . . . . . . . 8  |-  M  =  ( 1  +  K
)
2120oveq1i 6305 . . . . . . 7  |-  ( M  +  1 )  =  ( ( 1  +  K )  +  1 )
221, 21eqtri 2475 . . . . . 6  |-  N  =  ( ( 1  +  K )  +  1 )
23 df-2 10675 . . . . . . . 8  |-  2  =  ( 1  +  1 )
2423oveq1i 6305 . . . . . . 7  |-  ( 2  +  K )  =  ( ( 1  +  1 )  +  K
)
2518, 17, 18add32i 9857 . . . . . . 7  |-  ( ( 1  +  K )  +  1 )  =  ( ( 1  +  1 )  +  K
)
2624, 25eqtr4i 2478 . . . . . 6  |-  ( 2  +  K )  =  ( ( 1  +  K )  +  1 )
2722, 26eqtr4i 2478 . . . . 5  |-  N  =  ( 2  +  K
)
2827oveq1i 6305 . . . 4  |-  ( N  +  1 )  =  ( ( 2  +  K )  +  1 )
29 2cn 10687 . . . . 5  |-  2  e.  CC
3029, 17, 18addassi 9656 . . . 4  |-  ( ( 2  +  K )  +  1 )  =  ( 2  +  ( K  +  1 ) )
3128, 30eqtri 2475 . . 3  |-  ( N  +  1 )  =  ( 2  +  ( K  +  1 ) )
3215, 31breqtrri 4431 . 2  |-  2  ||  ( N  +  1 )
33 elfzuz2 11811 . . . . 5  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  N  e.  ( ZZ>= `  0 )
)
34 fzm1 11881 . . . . 5  |-  ( N  e.  ( ZZ>= `  0
)  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  <->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N ) ) )
3533, 34syl 17 . . . 4  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  (
( A  mod  8
)  e.  ( 0 ... N )  <->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N ) ) )
3635ibi 245 . . 3  |-  ( ( A  mod  8 )  e.  ( 0 ... N )  ->  (
( A  mod  8
)  e.  ( 0 ... ( N  - 
1 ) )  \/  ( A  mod  8
)  =  N ) )
37 elfzuz2 11811 . . . . . . . 8  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  M  e.  ( ZZ>= `  0 )
)
38 fzm1 11881 . . . . . . . 8  |-  ( M  e.  ( ZZ>= `  0
)  ->  ( ( A  mod  8 )  e.  ( 0 ... M
)  <->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M ) ) )
3937, 38syl 17 . . . . . . 7  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  (
( A  mod  8
)  e.  ( 0 ... M )  <->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M ) ) )
4039ibi 245 . . . . . 6  |-  ( ( A  mod  8 )  e.  ( 0 ... M )  ->  (
( A  mod  8
)  e.  ( 0 ... ( M  - 
1 ) )  \/  ( A  mod  8
)  =  M ) )
41 zcn 10949 . . . . . . . . 9  |-  ( N  e.  ZZ  ->  N  e.  CC )
4210, 41ax-mp 5 . . . . . . . 8  |-  N  e.  CC
43 zcn 10949 . . . . . . . . 9  |-  ( M  e.  ZZ  ->  M  e.  CC )
447, 43ax-mp 5 . . . . . . . 8  |-  M  e.  CC
4518, 44addcomi 9829 . . . . . . . . 9  |-  ( 1  +  M )  =  ( M  +  1 )
4645, 1eqtr4i 2478 . . . . . . . 8  |-  ( 1  +  M )  =  N
4742, 18, 44, 46subaddrii 9969 . . . . . . 7  |-  ( N  -  1 )  =  M
4847oveq2i 6306 . . . . . 6  |-  ( 0 ... ( N  - 
1 ) )  =  ( 0 ... M
)
4940, 48eleq2s 2549 . . . . 5  |-  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  ->  (
( A  mod  8
)  e.  ( 0 ... ( M  - 
1 ) )  \/  ( A  mod  8
)  =  M ) )
5020eqcomi 2462 . . . . . . . . . 10  |-  ( 1  +  K )  =  M
5144, 18, 17, 50subaddrii 9969 . . . . . . . . 9  |-  ( M  -  1 )  =  K
5251oveq2i 6306 . . . . . . . 8  |-  ( 0 ... ( M  - 
1 ) )  =  ( 0 ... K
)
5352eleq2i 2523 . . . . . . 7  |-  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  <->  ( A  mod  8 )  e.  ( 0 ... K ) )
543simp3i 1020 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... K
)  ->  ( A  mod  8 )  e.  S
) )
5553, 54syl5bi 221 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  ->  ( A  mod  8 )  e.  S
) )
56 2nn 10774 . . . . . . . . . . 11  |-  2  e.  NN
57 8nn 10780 . . . . . . . . . . 11  |-  8  e.  NN
58 4z 10978 . . . . . . . . . . . . . 14  |-  4  e.  ZZ
59 dvdsmul2 14337 . . . . . . . . . . . . . 14  |-  ( ( 4  e.  ZZ  /\  2  e.  ZZ )  ->  2  ||  ( 4  x.  2 ) )
6058, 12, 59mp2an 679 . . . . . . . . . . . . 13  |-  2  ||  ( 4  x.  2 )
61 4t2e8 10770 . . . . . . . . . . . . 13  |-  ( 4  x.  2 )  =  8
6260, 61breqtri 4429 . . . . . . . . . . . 12  |-  2  ||  8
63 dvdsmod 14374 . . . . . . . . . . . 12  |-  ( ( ( 2  e.  NN  /\  8  e.  NN  /\  A  e.  ZZ )  /\  2  ||  8 )  ->  ( 2  ||  ( A  mod  8
)  <->  2  ||  A
) )
6462, 63mpan2 678 . . . . . . . . . . 11  |-  ( ( 2  e.  NN  /\  8  e.  NN  /\  A  e.  ZZ )  ->  (
2  ||  ( A  mod  8 )  <->  2  ||  A ) )
6556, 57, 64mp3an12 1356 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  (
2  ||  ( A  mod  8 )  <->  2  ||  A ) )
6665notbid 296 . . . . . . . . 9  |-  ( A  e.  ZZ  ->  ( -.  2  ||  ( A  mod  8 )  <->  -.  2  ||  A ) )
6766biimpar 488 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  -.  2  ||  ( A  mod  8
) )
6811, 2breqtrri 4431 . . . . . . . . 9  |-  2  ||  M
69 id 22 . . . . . . . . 9  |-  ( ( A  mod  8 )  =  M  ->  ( A  mod  8 )  =  M )
7068, 69syl5breqr 4442 . . . . . . . 8  |-  ( ( A  mod  8 )  =  M  ->  2  ||  ( A  mod  8
) )
7167, 70nsyl 125 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  -.  ( A  mod  8 )  =  M )
7271pm2.21d 110 . . . . . 6  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  =  M  ->  ( A  mod  8 )  e.  S
) )
7355, 72jaod 382 . . . . 5  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( ( A  mod  8 )  e.  ( 0 ... ( M  -  1 ) )  \/  ( A  mod  8 )  =  M )  ->  ( A  mod  8 )  e.  S ) )
7449, 73syl5 33 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  ->  ( A  mod  8 )  e.  S
) )
75 lgsdir2lem2.4 . . . . . 6  |-  N  e.  S
76 eleq1 2519 . . . . . 6  |-  ( ( A  mod  8 )  =  N  ->  (
( A  mod  8
)  e.  S  <->  N  e.  S ) )
7775, 76mpbiri 237 . . . . 5  |-  ( ( A  mod  8 )  =  N  ->  ( A  mod  8 )  e.  S )
7877a1i 11 . . . 4  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  =  N  ->  ( A  mod  8 )  e.  S
) )
7974, 78jaod 382 . . 3  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( ( A  mod  8 )  e.  ( 0 ... ( N  -  1 ) )  \/  ( A  mod  8 )  =  N )  ->  ( A  mod  8 )  e.  S ) )
8036, 79syl5 33 . 2  |-  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) )
8110, 32, 803pm3.2i 1187 1  |-  ( N  e.  ZZ  /\  2  ||  ( N  +  1 )  /\  ( ( A  e.  ZZ  /\  -.  2  ||  A )  ->  ( ( A  mod  8 )  e.  ( 0 ... N
)  ->  ( A  mod  8 )  e.  S
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    \/ wo 370    /\ wa 371    /\ w3a 986    = wceq 1446    e. wcel 1889   class class class wbr 4405   ` cfv 5585  (class class class)co 6295   CCcc 9542   0cc0 9544   1c1 9545    + caddc 9547    x. cmul 9549    - cmin 9865   NNcn 10616   2c2 10666   4c4 10668   8c8 10672   ZZcz 10944   ZZ>=cuz 11166   ...cfz 11791    mod cmo 12103    || cdvds 14317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-er 7368  df-en 7575  df-dom 7576  df-sdom 7577  df-sup 7961  df-inf 7962  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-n0 10877  df-z 10945  df-uz 11167  df-rp 11310  df-fz 11792  df-fl 12035  df-mod 12104  df-dvds 14318
This theorem is referenced by:  lgsdir2lem3  24265
  Copyright terms: Public domain W3C validator