MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdir Unicode version

Theorem lgsdir 21067
Description: The Legendre symbol is completely multiplicative in its left argument. Together with lgsqr 21083 this implies that the product of two quadratic residues or nonresidues is a residue, and the product of a residue and a nonresidue is a nonresidue. (Contributed by Mario Carneiro, 4-Feb-2015.)
Assertion
Ref Expression
lgsdir  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  / L N
)  =  ( ( A  / L N
)  x.  ( B  / L N ) ) )

Proof of Theorem lgsdir
Dummy variables  k  n  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1cn 9004 . . . . . . 7  |-  1  e.  CC
2 0cn 9040 . . . . . . 7  |-  0  e.  CC
31, 2keepel 3756 . . . . . 6  |-  if ( ( B ^ 2 )  =  1 ,  1 ,  0 )  e.  CC
43mulid2i 9049 . . . . 5  |-  ( 1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 )
5 iftrue 3705 . . . . . . 7  |-  ( ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  1 )
65adantl 453 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  =  1 )
76oveq1d 6055 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  ( 1  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
8 simpl1 960 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  ZZ )
98zcnd 10332 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  e.  CC )
109ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  A  e.  CC )
11 simpl2 961 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  ZZ )
1211zcnd 10332 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  B  e.  CC )
1312ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  B  e.  CC )
1410, 13sqmuld 11490 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  x.  B ) ^ 2 )  =  ( ( A ^
2 )  x.  ( B ^ 2 ) ) )
15 simpr 448 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( A ^ 2 )  =  1 )
1615oveq1d 6055 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A ^ 2 )  x.  ( B ^ 2 ) )  =  ( 1  x.  ( B ^ 2 ) ) )
1712sqcld 11476 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( B ^ 2 )  e.  CC )
1817ad2antrr 707 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( B ^ 2 )  e.  CC )
1918mulid2d 9062 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( 1  x.  ( B ^
2 ) )  =  ( B ^ 2 ) )
2014, 16, 193eqtrd 2440 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( ( A  x.  B ) ^ 2 )  =  ( B ^ 2 ) )
2120eqeq1d 2412 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( (
( A  x.  B
) ^ 2 )  =  1  <->  ( B ^ 2 )  =  1 ) )
2221ifbid 3717 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  if (
( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
234, 7, 223eqtr4a 2462 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  ( A ^
2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
243mul02i 9211 . . . . 5  |-  ( 0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  0
25 iffalse 3706 . . . . . . 7  |-  ( -.  ( A ^ 2 )  =  1  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
2625adantl 453 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  if ( ( A ^
2 )  =  1 ,  1 ,  0 )  =  0 )
2726oveq1d 6055 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  ( 0  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
28 dvdsmul1 12826 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A  ||  ( A  x.  B ) )
298, 11, 28syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  ||  ( A  x.  B
) )
308, 11zmulcld 10337 . . . . . . . . . . . 12  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  x.  B )  e.  ZZ )
31 dvdssq 13015 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  ( A  x.  B
)  e.  ZZ )  ->  ( A  ||  ( A  x.  B
)  <->  ( A ^
2 )  ||  (
( A  x.  B
) ^ 2 ) ) )
328, 30, 31syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  ||  ( A  x.  B )  <->  ( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 ) ) )
3329, 32mpbid 202 . . . . . . . . . 10  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 ) )
3433adantr 452 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  ||  (
( A  x.  B
) ^ 2 ) )
35 breq2 4176 . . . . . . . . 9  |-  ( ( ( A  x.  B
) ^ 2 )  =  1  ->  (
( A ^ 2 )  ||  ( ( A  x.  B ) ^ 2 )  <->  ( A ^ 2 )  ||  1 ) )
3634, 35syl5ibcom 212 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( ( A  x.  B ) ^ 2 )  =  1  ->  ( A ^ 2 )  ||  1 ) )
37 simprl 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  A  =/=  0 )
3837neneqd 2583 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  -.  A  =  0 )
39 sqeq0 11401 . . . . . . . . . . . . . . . 16  |-  ( A  e.  CC  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
409, 39syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A ^ 2 )  =  0  <->  A  =  0 ) )
4138, 40mtbird 293 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  -.  ( A ^ 2 )  =  0 )
42 zsqcl2 11414 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  ZZ  ->  ( A ^ 2 )  e. 
NN0 )
438, 42syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  e. 
NN0 )
44 elnn0 10179 . . . . . . . . . . . . . . . 16  |-  ( ( A ^ 2 )  e.  NN0  <->  ( ( A ^ 2 )  e.  NN  \/  ( A ^ 2 )  =  0 ) )
4543, 44sylib 189 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A ^ 2 )  e.  NN  \/  ( A ^ 2 )  =  0 ) )
4645ord 367 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( -.  ( A ^ 2 )  e.  NN  ->  ( A ^ 2 )  =  0 ) )
4741, 46mt3d 119 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A ^ 2 )  e.  NN )
4847adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  NN )
4948nnzd 10330 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  ZZ )
50 1nn 9967 . . . . . . . . . . 11  |-  1  e.  NN
51 dvdsle 12850 . . . . . . . . . . 11  |-  ( ( ( A ^ 2 )  e.  ZZ  /\  1  e.  NN )  ->  ( ( A ^
2 )  ||  1  ->  ( A ^ 2 )  <_  1 ) )
5249, 50, 51sylancl 644 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( A ^
2 )  <_  1
) )
5348nnge1d 9998 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  1  <_  ( A ^ 2 ) )
5452, 53jctird 529 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( ( A ^ 2 )  <_ 
1  /\  1  <_  ( A ^ 2 ) ) ) )
5548nnred 9971 . . . . . . . . . 10  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A ^
2 )  e.  RR )
56 1re 9046 . . . . . . . . . 10  |-  1  e.  RR
57 letri3 9116 . . . . . . . . . 10  |-  ( ( ( A ^ 2 )  e.  RR  /\  1  e.  RR )  ->  ( ( A ^
2 )  =  1  <-> 
( ( A ^
2 )  <_  1  /\  1  <_  ( A ^ 2 ) ) ) )
5855, 56, 57sylancl 644 . . . . . . . . 9  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  =  1  <->  ( ( A ^ 2 )  <_ 
1  /\  1  <_  ( A ^ 2 ) ) ) )
5954, 58sylibrd 226 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A ^ 2 )  ||  1  ->  ( A ^
2 )  =  1 ) )
6036, 59syld 42 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( ( A  x.  B ) ^ 2 )  =  1  ->  ( A ^ 2 )  =  1 ) )
6160con3and 429 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  -.  ( ( A  x.  B ) ^ 2 )  =  1 )
62 iffalse 3706 . . . . . 6  |-  ( -.  ( ( A  x.  B ) ^ 2 )  =  1  ->  if ( ( ( A  x.  B ) ^
2 )  =  1 ,  1 ,  0 )  =  0 )
6361, 62syl 16 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  if ( ( ( A  x.  B ) ^
2 )  =  1 ,  1 ,  0 )  =  0 )
6424, 27, 633eqtr4a 2462 . . . 4  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  /\  -.  ( A ^ 2 )  =  1 )  ->  ( if ( ( A ^
2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
6523, 64pm2.61dan 767 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )  =  if ( ( ( A  x.  B
) ^ 2 )  =  1 ,  1 ,  0 ) )
66 oveq2 6048 . . . . 5  |-  ( N  =  0  ->  ( A  / L N )  =  ( A  / L 0 ) )
67 lgs0 21046 . . . . . 6  |-  ( A  e.  ZZ  ->  ( A  / L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
688, 67syl 16 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( A  / L 0 )  =  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) )
6966, 68sylan9eqr 2458 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( A  / L N )  =  if ( ( A ^
2 )  =  1 ,  1 ,  0 ) )
70 oveq2 6048 . . . . 5  |-  ( N  =  0  ->  ( B  / L N )  =  ( B  / L 0 ) )
71 lgs0 21046 . . . . . 6  |-  ( B  e.  ZZ  ->  ( B  / L 0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
7211, 71syl 16 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  ( B  / L 0 )  =  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) )
7370, 72sylan9eqr 2458 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( B  / L N )  =  if ( ( B ^
2 )  =  1 ,  1 ,  0 ) )
7469, 73oveq12d 6058 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  / L N )  x.  ( B  / L N ) )  =  ( if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  x.  if ( ( B ^ 2 )  =  1 ,  1 ,  0 ) ) )
75 oveq2 6048 . . . 4  |-  ( N  =  0  ->  (
( A  x.  B
)  / L N
)  =  ( ( A  x.  B )  / L 0 ) )
76 lgs0 21046 . . . . 5  |-  ( ( A  x.  B )  e.  ZZ  ->  (
( A  x.  B
)  / L 0 )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
7730, 76syl 16 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  / L 0 )  =  if ( ( ( A  x.  B ) ^ 2 )  =  1 ,  1 ,  0 ) )
7875, 77sylan9eqr 2458 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  x.  B )  / L N )  =  if ( ( ( A  x.  B ) ^
2 )  =  1 ,  1 ,  0 ) )
7965, 74, 783eqtr4rd 2447 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =  0 )  ->  ( ( A  x.  B )  / L N )  =  ( ( A  / L N )  x.  ( B  / L N ) ) )
80 lgsdilem 21059 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
8180adantr 452 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) ) )
82 mulcl 9030 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
8382adantl 453 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  e.  CC )
84 mulcom 9032 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
8584adantl 453 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  ( x  e.  CC  /\  y  e.  CC ) )  ->  ( x  x.  y )  =  ( y  x.  x ) )
86 mulass 9034 . . . . . 6  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
8786adantl 453 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )
)  ->  ( (
x  x.  y )  x.  z )  =  ( x  x.  (
y  x.  z ) ) )
88 simpl3 962 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  N  e.  ZZ )
89 nnabscl 12084 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
9088, 89sylan 458 . . . . . 6  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
91 nnuz 10477 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
9290, 91syl6eleq 2494 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  ( ZZ>= ` 
1 ) )
93 simpll1 996 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  A  e.  ZZ )
94 simpll3 998 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  N  e.  ZZ )
95 simpr 448 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  N  =/=  0 )
96 eqid 2404 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
9796lgsfcl3 21054 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
9893, 94, 95, 97syl3anc 1184 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
99 elfznn 11036 . . . . . . 7  |-  ( k  e.  ( 1 ... ( abs `  N
) )  ->  k  e.  NN )
100 ffvelrn 5827 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
10198, 99, 100syl2an 464 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
102101zcnd 10332 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
103 simpll2 997 . . . . . . . 8  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  B  e.  ZZ )
104 eqid 2404 . . . . . . . . 9  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
105104lgsfcl3 21054 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
106103, 94, 95, 105syl3anc 1184 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ )
107 ffvelrn 5827 . . . . . . 7  |-  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) : NN --> ZZ  /\  k  e.  NN )  ->  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  e.  ZZ )
108106, 99, 107syl2an 464 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  ZZ )
109108zcnd 10332 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  e.  CC )
11093adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  A  e.  ZZ )
111103adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  B  e.  ZZ )
112 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
k  e.  Prime )
113 lgsdirprm 21066 . . . . . . . . . . . 12  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  k  e.  Prime )  ->  (
( A  x.  B
)  / L k )  =  ( ( A  / L k )  x.  ( B  / L k ) ) )
114110, 111, 112, 113syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( A  x.  B )  / L
k )  =  ( ( A  / L
k )  x.  ( B  / L k ) ) )
115114oveq1d 6055 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) )  =  ( ( ( A  / L k )  x.  ( B  / L
k ) ) ^
( k  pCnt  N
) ) )
116 prmz 13038 . . . . . . . . . . . . 13  |-  ( k  e.  Prime  ->  k  e.  ZZ )
117 lgscl 21047 . . . . . . . . . . . . 13  |-  ( ( A  e.  ZZ  /\  k  e.  ZZ )  ->  ( A  / L
k )  e.  ZZ )
11893, 116, 117syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( A  / L
k )  e.  ZZ )
119118zcnd 10332 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( A  / L
k )  e.  CC )
120 lgscl 21047 . . . . . . . . . . . . 13  |-  ( ( B  e.  ZZ  /\  k  e.  ZZ )  ->  ( B  / L
k )  e.  ZZ )
121103, 116, 120syl2an 464 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( B  / L
k )  e.  ZZ )
122121zcnd 10332 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( B  / L
k )  e.  CC )
12394adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  N  e.  ZZ )
12495adantr 452 . . . . . . . . . . . 12  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  N  =/=  0 )
125 pczcl 13177 . . . . . . . . . . . 12  |-  ( ( k  e.  Prime  /\  ( N  e.  ZZ  /\  N  =/=  0 ) )  -> 
( k  pCnt  N
)  e.  NN0 )
126112, 123, 124, 125syl12anc 1182 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( k  pCnt  N
)  e.  NN0 )
127119, 122, 126mulexpd 11493 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  / L k )  x.  ( B  / L k ) ) ^ ( k  pCnt  N ) )  =  ( ( ( A  / L k ) ^
( k  pCnt  N
) )  x.  (
( B  / L
k ) ^ (
k  pCnt  N )
) ) )
128115, 127eqtrd 2436 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) )  =  ( ( ( A  / L k ) ^
( k  pCnt  N
) )  x.  (
( B  / L
k ) ^ (
k  pCnt  N )
) ) )
129 iftrue 3705 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( ( A  x.  B )  / L k ) ^ ( k  pCnt  N ) ) )
130129adantl 453 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( ( ( A  x.  B
)  / L k ) ^ ( k 
pCnt  N ) ) )
131 iftrue 3705 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  / L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( A  / L k ) ^ ( k  pCnt  N ) ) )
132 iftrue 3705 . . . . . . . . . . 11  |-  ( k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 )  =  ( ( B  / L k ) ^ ( k  pCnt  N ) ) )
133131, 132oveq12d 6058 . . . . . . . . . 10  |-  ( k  e.  Prime  ->  ( if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( ( ( A  / L
k ) ^ (
k  pCnt  N )
)  x.  ( ( B  / L k ) ^ ( k 
pCnt  N ) ) ) )
134133adantl 453 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  -> 
( if ( k  e.  Prime ,  ( ( A  / L k ) ^ ( k 
pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L k ) ^
( k  pCnt  N
) ) ,  1 ) )  =  ( ( ( A  / L k ) ^
( k  pCnt  N
) )  x.  (
( B  / L
k ) ^ (
k  pCnt  N )
) ) )
135128, 130, 1343eqtr4d 2446 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
136 1t1e1 10082 . . . . . . . . . . 11  |-  ( 1  x.  1 )  =  1
137136eqcomi 2408 . . . . . . . . . 10  |-  1  =  ( 1  x.  1 )
138 iffalse 3706 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
139 iffalse 3706 . . . . . . . . . . 11  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
140 iffalse 3706 . . . . . . . . . . 11  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( B  / L k ) ^
( k  pCnt  N
) ) ,  1 )  =  1 )
141139, 140oveq12d 6058 . . . . . . . . . 10  |-  ( -.  k  e.  Prime  ->  ( if ( k  e. 
Prime ,  ( ( A  / L k ) ^ ( k  pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) )  =  ( 1  x.  1 ) )
142137, 138, 1413eqtr4a 2462 . . . . . . . . 9  |-  ( -.  k  e.  Prime  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
143142adantl 453 . . . . . . . 8  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  -.  k  e.  Prime )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B
)  / L k ) ^ ( k 
pCnt  N ) ) ,  1 )  =  ( if ( k  e. 
Prime ,  ( ( A  / L k ) ^ ( k  pCnt  N ) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
144135, 143pm2.61dan 767 . . . . . . 7  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
145144adantr 452 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  ->  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) ) ,  1 )  =  ( if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
14699adantl 453 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
k  e.  NN )
147 eleq1 2464 . . . . . . . . 9  |-  ( n  =  k  ->  (
n  e.  Prime  <->  k  e.  Prime ) )
148 oveq2 6048 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( A  x.  B
)  / L n )  =  ( ( A  x.  B )  / L k ) )
149 oveq1 6047 . . . . . . . . . 10  |-  ( n  =  k  ->  (
n  pCnt  N )  =  ( k  pCnt  N ) )
150148, 149oveq12d 6058 . . . . . . . . 9  |-  ( n  =  k  ->  (
( ( A  x.  B )  / L
n ) ^ (
n  pCnt  N )
)  =  ( ( ( A  x.  B
)  / L k ) ^ ( k 
pCnt  N ) ) )
151 eqidd 2405 . . . . . . . . 9  |-  ( n  =  k  ->  1  =  1 )
152147, 150, 151ifbieq12d 3721 . . . . . . . 8  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  / L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
153 eqid 2404 . . . . . . . 8  |-  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) )
154 ovex 6065 . . . . . . . . 9  |-  ( ( ( A  x.  B
)  / L k ) ^ ( k 
pCnt  N ) )  e. 
_V
155 1ex 9042 . . . . . . . . 9  |-  1  e.  _V
156154, 155ifex 3757 . . . . . . . 8  |-  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L
k ) ^ (
k  pCnt  N )
) ,  1 )  e.  _V
157152, 153, 156fvmpt 5765 . . . . . . 7  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
)  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
158146, 157syl 16 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( ( A  x.  B )  / L k ) ^
( k  pCnt  N
) ) ,  1 ) )
159 oveq2 6048 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( A  / L n )  =  ( A  / L k ) )
160159, 149oveq12d 6058 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( A  / L
n ) ^ (
n  pCnt  N )
)  =  ( ( A  / L k ) ^ ( k 
pCnt  N ) ) )
161147, 160, 151ifbieq12d 3721 . . . . . . . . 9  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( A  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
162 ovex 6065 . . . . . . . . . 10  |-  ( ( A  / L k ) ^ ( k 
pCnt  N ) )  e. 
_V
163162, 155ifex 3757 . . . . . . . . 9  |-  if ( k  e.  Prime ,  ( ( A  / L
k ) ^ (
k  pCnt  N )
) ,  1 )  e.  _V
164161, 96, 163fvmpt 5765 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
)  =  if ( k  e.  Prime ,  ( ( A  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
165146, 164syl 16 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  N
) ) ,  1 ) )
166 oveq2 6048 . . . . . . . . . . 11  |-  ( n  =  k  ->  ( B  / L n )  =  ( B  / L k ) )
167166, 149oveq12d 6058 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( B  / L
n ) ^ (
n  pCnt  N )
)  =  ( ( B  / L k ) ^ ( k 
pCnt  N ) ) )
168147, 167, 151ifbieq12d 3721 . . . . . . . . 9  |-  ( n  =  k  ->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 )  =  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
169 ovex 6065 . . . . . . . . . 10  |-  ( ( B  / L k ) ^ ( k 
pCnt  N ) )  e. 
_V
170169, 155ifex 3757 . . . . . . . . 9  |-  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 )  e.  _V
171168, 104, 170fvmpt 5765 . . . . . . . 8  |-  ( k  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
)  =  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) )
172146, 171syl 16 . . . . . . 7  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  if ( k  e.  Prime ,  ( ( B  / L k ) ^
( k  pCnt  N
) ) ,  1 ) )
173165, 172oveq12d 6058 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k )  x.  ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) `  k ) )  =  ( if ( k  e.  Prime ,  ( ( A  / L k ) ^
( k  pCnt  N
) ) ,  1 )  x.  if ( k  e.  Prime ,  ( ( B  / L
k ) ^ (
k  pCnt  N )
) ,  1 ) ) )
174145, 158, 1733eqtr4d 2446 . . . . 5  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  k  e.  ( 1 ... ( abs `  N
) ) )  -> 
( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B
)  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  =  ( ( ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) `  k )  x.  (
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) `  k
) ) )
17583, 85, 87, 92, 102, 109, 174seqcaopr 11315 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  =  ( (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
17681, 175oveq12d 6058 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( if ( ( N  <  0  /\  ( A  x.  B
)  <  0 ) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  =  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 ) )  x.  ( (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
17730adantr 452 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( A  x.  B
)  e.  ZZ )
178153lgsval4 21053 . . . 4  |-  ( ( ( A  x.  B
)  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  (
( A  x.  B
)  / L N
)  =  ( if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
179177, 94, 95, 178syl3anc 1184 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  x.  B )  / L N )  =  ( if ( ( N  <  0  /\  ( A  x.  B )  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( ( A  x.  B )  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
18096lgsval4 21053 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( A  / L N )  =  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
18193, 94, 95, 180syl3anc 1184 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( A  / L N )  =  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
182104lgsval4 21053 . . . . . 6  |-  ( ( B  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  ( B  / L N )  =  ( if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) ) )
183103, 94, 95, 182syl3anc 1184 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( B  / L N )  =  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )
184181, 183oveq12d 6058 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  / L N )  x.  ( B  / L N ) )  =  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) )  x.  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
185 neg1cn 10023 . . . . . . 7  |-  -u 1  e.  CC
186185, 1keepel 3756 . . . . . 6  |-  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  e.  CC
187186a1i 11 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  CC )
188 mulcl 9030 . . . . . . 7  |-  ( ( k  e.  CC  /\  x  e.  CC )  ->  ( k  x.  x
)  e.  CC )
189188adantl 453 . . . . . 6  |-  ( ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  /\  ( k  e.  CC  /\  x  e.  CC ) )  ->  ( k  x.  x )  e.  CC )
19092, 102, 189seqcl 11298 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
191185, 1keepel 3756 . . . . . 6  |-  if ( ( N  <  0  /\  B  <  0
) ,  -u 1 ,  1 )  e.  CC
192191a1i 11 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  ->  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  e.  CC )
19392, 109, 189seqcl 11298 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
(  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  e.  CC )
194187, 190, 192, 193mul4d 9234 . . . 4  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) ) )  x.  ( if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) )  =  ( ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u
1 ,  1 ) )  x.  ( (  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L n ) ^ ( n 
pCnt  N ) ) ,  1 ) ) ) `
 ( abs `  N
) )  x.  (  seq  1 (  x.  , 
( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
195184, 194eqtrd 2436 . . 3  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  / L N )  x.  ( B  / L N ) )  =  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  if ( ( N  <  0  /\  B  <  0 ) ,  -u 1 ,  1 ) )  x.  (
(  seq  1 (  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( A  / L
n ) ^ (
n  pCnt  N )
) ,  1 ) ) ) `  ( abs `  N ) )  x.  (  seq  1
(  x.  ,  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( ( B  / L n ) ^
( n  pCnt  N
) ) ,  1 ) ) ) `  ( abs `  N ) ) ) ) )
196176, 179, 1953eqtr4d 2446 . 2  |-  ( ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0 ) )  /\  N  =/=  0 )  -> 
( ( A  x.  B )  / L N )  =  ( ( A  / L N )  x.  ( B  / L N ) ) )
19779, 196pm2.61dane 2645 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  N  e.  ZZ )  /\  ( A  =/=  0  /\  B  =/=  0
) )  ->  (
( A  x.  B
)  / L N
)  =  ( ( A  / L N
)  x.  ( B  / L N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   ifcif 3699   class class class wbr 4172    e. cmpt 4226   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951    < clt 9076    <_ cle 9077   -ucneg 9248   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238   ZZ>=cuz 10444   ...cfz 10999    seq cseq 11278   ^cexp 11337   abscabs 11994    || cdivides 12807   Primecprime 13034    pCnt cpc 13165    / Lclgs 21031
This theorem is referenced by:  lgssq  21072  lgsdirnn0  21076  lgsquad2lem1  21095
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-n0 10178  df-z 10239  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-prm 13035  df-phi 13110  df-pc 13166  df-lgs 21032
  Copyright terms: Public domain W3C validator