MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsdchr Unicode version

Theorem lgsdchr 21085
Description: The Legendre symbol function  X ( m )  =  ( m  / L N ), where  N is an odd positive number, is a real Dirichlet character modulo  N. (Contributed by Mario Carneiro, 28-Apr-2016.)
Hypotheses
Ref Expression
lgsdchr.g  |-  G  =  (DChr `  N )
lgsdchr.z  |-  Z  =  (ℤ/n `  N )
lgsdchr.d  |-  D  =  ( Base `  G
)
lgsdchr.b  |-  B  =  ( Base `  Z
)
lgsdchr.l  |-  L  =  ( ZRHom `  Z
)
lgsdchr.x  |-  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  (
y  =  ( L `
 m )  /\  h  =  ( m  / L N ) ) ) )
Assertion
Ref Expression
lgsdchr  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  /\  X : B
--> RR ) )
Distinct variable groups:    y, B    h, m, y, L    h, N, m, y    y, X   
y, Z
Allowed substitution hints:    B( h, m)    D( y, h, m)    G( y, h, m)    X( h, m)    Z( h, m)

Proof of Theorem lgsdchr
Dummy variables  a 
b  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iotaex 5394 . . . . . 6  |-  ( iota
h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  / L N
) ) )  e. 
_V
21a1i 11 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  y  e.  B )  ->  ( iota h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  / L N
) ) )  e. 
_V )
3 lgsdchr.x . . . . . 6  |-  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  (
y  =  ( L `
 m )  /\  h  =  ( m  / L N ) ) ) )
43a1i 11 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X  =  ( y  e.  B  |->  ( iota h E. m  e.  ZZ  ( y  =  ( L `  m
)  /\  h  =  ( m  / L N
) ) ) ) )
5 nnnn0 10184 . . . . . . . . 9  |-  ( N  e.  NN  ->  N  e.  NN0 )
65adantr 452 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN0 )
7 lgsdchr.z . . . . . . . . 9  |-  Z  =  (ℤ/n `  N )
8 lgsdchr.b . . . . . . . . 9  |-  B  =  ( Base `  Z
)
9 lgsdchr.l . . . . . . . . 9  |-  L  =  ( ZRHom `  Z
)
107, 8, 9znzrhfo 16783 . . . . . . . 8  |-  ( N  e.  NN0  ->  L : ZZ -onto-> B )
116, 10syl 16 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  L : ZZ -onto-> B )
12 foelrn 5847 . . . . . . 7  |-  ( ( L : ZZ -onto-> B  /\  x  e.  B
)  ->  E. a  e.  ZZ  x  =  ( L `  a ) )
1311, 12sylan 458 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  E. a  e.  ZZ  x  =  ( L `  a ) )
14 lgsdchr.g . . . . . . . . . . 11  |-  G  =  (DChr `  N )
15 lgsdchr.d . . . . . . . . . . 11  |-  D  =  ( Base `  G
)
1614, 7, 15, 8, 9, 3lgsdchrval 21084 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( X `
 ( L `  a ) )  =  ( a  / L N ) )
17 simpr 448 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  a  e.  ZZ )
18 nnz 10259 . . . . . . . . . . . . 13  |-  ( N  e.  NN  ->  N  e.  ZZ )
1918ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  N  e.  ZZ )
20 lgscl 21047 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  N  e.  ZZ )  ->  ( a  / L N )  e.  ZZ )
2117, 19, 20syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( a  / L N )  e.  ZZ )
2221zred 10331 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( a  / L N )  e.  RR )
2316, 22eqeltrd 2478 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( X `
 ( L `  a ) )  e.  RR )
24 fveq2 5687 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  ( X `  x )  =  ( X `  ( L `  a ) ) )
2524eleq1d 2470 . . . . . . . . 9  |-  ( x  =  ( L `  a )  ->  (
( X `  x
)  e.  RR  <->  ( X `  ( L `  a
) )  e.  RR ) )
2623, 25syl5ibrcom 214 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( x  =  ( L `  a )  ->  ( X `  x )  e.  RR ) )
2726rexlimdva 2790 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  x  =  ( L `  a )  ->  ( X `  x )  e.  RR ) )
2827imp 419 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  E. a  e.  ZZ  x  =  ( L `  a ) )  ->  ( X `  x )  e.  RR )
2913, 28syldan 457 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  ( X `  x )  e.  RR )
302, 4, 29fmpt2d 5857 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X : B --> RR )
31 ax-resscn 9003 . . . 4  |-  RR  C_  CC
32 fss 5558 . . . 4  |-  ( ( X : B --> RR  /\  RR  C_  CC )  ->  X : B --> CC )
3330, 31, 32sylancl 644 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X : B --> CC )
34 eqid 2404 . . . . . 6  |-  (Unit `  Z )  =  (Unit `  Z )
358, 34unitss 15720 . . . . 5  |-  (Unit `  Z )  C_  B
36 foelrn 5847 . . . . . . . . 9  |-  ( ( L : ZZ -onto-> B  /\  y  e.  B
)  ->  E. b  e.  ZZ  y  =  ( L `  b ) )
3711, 36sylan 458 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  y  e.  B )  ->  E. b  e.  ZZ  y  =  ( L `  b ) )
3813, 37anim12dan 811 . . . . . . 7  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )
39 reeanv 2835 . . . . . . . . 9  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  <->  ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )
4017adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
a  e.  ZZ )
41 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
b  e.  ZZ )
426adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  N  e.  NN0 )
43 lgsdirnn0 21076 . . . . . . . . . . . . 13  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  N  e.  NN0 )  ->  (
( a  x.  b
)  / L N
)  =  ( ( a  / L N
)  x.  ( b  / L N ) ) )
4440, 41, 42, 43syl3anc 1184 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( a  x.  b )  / L N )  =  ( ( a  / L N )  x.  (
b  / L N
) ) )
457zncrng 16780 . . . . . . . . . . . . . . . . . . 19  |-  ( N  e.  NN0  ->  Z  e. 
CRing )
466, 45syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  Z  e.  CRing )
47 crngrng 15629 . . . . . . . . . . . . . . . . . 18  |-  ( Z  e.  CRing  ->  Z  e.  Ring )
4846, 47syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  Z  e.  Ring )
4948adantr 452 . . . . . . . . . . . . . . . 16  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  Z  e.  Ring )
50 eqid 2404 . . . . . . . . . . . . . . . . 17  |-  (flds  ZZ )  =  (flds  ZZ )
5150, 9zrhrhm 16748 . . . . . . . . . . . . . . . 16  |-  ( Z  e.  Ring  ->  L  e.  ( (flds  ZZ ) RingHom  Z ) )
5249, 51syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  ->  L  e.  ( (flds  ZZ ) RingHom  Z ) )
53 zsscn 10246 . . . . . . . . . . . . . . . . 17  |-  ZZ  C_  CC
54 cnfldbas 16662 . . . . . . . . . . . . . . . . . 18  |-  CC  =  ( Base ` fld )
5550, 54ressbas2 13475 . . . . . . . . . . . . . . . . 17  |-  ( ZZ  C_  CC  ->  ZZ  =  ( Base `  (flds  ZZ ) ) )
5653, 55ax-mp 8 . . . . . . . . . . . . . . . 16  |-  ZZ  =  ( Base `  (flds  ZZ ) )
57 zex 10247 . . . . . . . . . . . . . . . . 17  |-  ZZ  e.  _V
58 cnfldmul 16664 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
5950, 58ressmulr 13537 . . . . . . . . . . . . . . . . 17  |-  ( ZZ  e.  _V  ->  x.  =  ( .r `  (flds  ZZ ) ) )
6057, 59ax-mp 8 . . . . . . . . . . . . . . . 16  |-  x.  =  ( .r `  (flds  ZZ ) )
61 eqid 2404 . . . . . . . . . . . . . . . 16  |-  ( .r
`  Z )  =  ( .r `  Z
)
6256, 60, 61rhmmul 15783 . . . . . . . . . . . . . . 15  |-  ( ( L  e.  ( (flds  ZZ ) RingHom  Z )  /\  a  e.  ZZ  /\  b  e.  ZZ )  ->  ( L `  ( a  x.  b ) )  =  ( ( L `  a ) ( .r
`  Z ) ( L `  b ) ) )
6352, 40, 41, 62syl3anc 1184 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( L `  (
a  x.  b ) )  =  ( ( L `  a ) ( .r `  Z
) ( L `  b ) ) )
6463fveq2d 5691 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  ( a  x.  b ) ) )  =  ( X `  ( ( L `  a ) ( .r
`  Z ) ( L `  b ) ) ) )
65 zmulcl 10280 . . . . . . . . . . . . . 14  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  x.  b
)  e.  ZZ )
6614, 7, 15, 8, 9, 3lgsdchrval 21084 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  x.  b )  e.  ZZ )  ->  ( X `  ( L `  ( a  x.  b ) ) )  =  ( ( a  x.  b )  / L N ) )
6765, 66sylan2 461 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  ( a  x.  b ) ) )  =  ( ( a  x.  b )  / L N ) )
6864, 67eqtr3d 2438 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( a  x.  b )  / L N ) )
6916adantrr 698 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  a )
)  =  ( a  / L N ) )
7014, 7, 15, 8, 9, 3lgsdchrval 21084 . . . . . . . . . . . . . 14  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  b  e.  ZZ )  ->  ( X `
 ( L `  b ) )  =  ( b  / L N ) )
7170adantrl 697 . . . . . . . . . . . . 13  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  ( L `  b )
)  =  ( b  / L N ) )
7269, 71oveq12d 6058 . . . . . . . . . . . 12  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( X `  ( L `  a ) )  x.  ( X `
 ( L `  b ) ) )  =  ( ( a  / L N )  x.  ( b  / L N ) ) )
7344, 68, 723eqtr4d 2446 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) )
74 oveq12 6049 . . . . . . . . . . . . 13  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( x ( .r
`  Z ) y )  =  ( ( L `  a ) ( .r `  Z
) ( L `  b ) ) )
7574fveq2d 5691 . . . . . . . . . . . 12  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( X `
 ( ( L `
 a ) ( .r `  Z ) ( L `  b
) ) ) )
76 fveq2 5687 . . . . . . . . . . . . 13  |-  ( y  =  ( L `  b )  ->  ( X `  y )  =  ( X `  ( L `  b ) ) )
7724, 76oveqan12d 6059 . . . . . . . . . . . 12  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( ( X `  x )  x.  ( X `  y )
)  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) )
7875, 77eqeq12d 2418 . . . . . . . . . . 11  |-  ( ( x  =  ( L `
 a )  /\  y  =  ( L `  b ) )  -> 
( ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  <-> 
( X `  (
( L `  a
) ( .r `  Z ) ( L `
 b ) ) )  =  ( ( X `  ( L `
 a ) )  x.  ( X `  ( L `  b ) ) ) ) )
7973, 78syl5ibrcom 214 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( a  e.  ZZ  /\  b  e.  ZZ ) )  -> 
( ( x  =  ( L `  a
)  /\  y  =  ( L `  b ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
8079rexlimdvva 2797 . . . . . . . . 9  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  ( x  =  ( L `  a
)  /\  y  =  ( L `  b ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) ) )
8139, 80syl5bir 210 . . . . . . . 8  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8281imp 419 . . . . . . 7  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( E. a  e.  ZZ  x  =  ( L `  a )  /\  E. b  e.  ZZ  y  =  ( L `  b ) ) )  ->  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) ) )
8338, 82syldan 457 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
8483ralrimivva 2758 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r `  Z
) y ) )  =  ( ( X `
 x )  x.  ( X `  y
) ) )
85 ssralv 3367 . . . . . . 7  |-  ( (Unit `  Z )  C_  B  ->  ( A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
) ) )
8685ralimdv 2745 . . . . . 6  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. x  e.  B  A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
) ) )
87 ssralv 3367 . . . . . 6  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8886, 87syld 42 . . . . 5  |-  ( (Unit `  Z )  C_  B  ->  ( A. x  e.  B  A. y  e.  B  ( X `  ( x ( .r
`  Z ) y ) )  =  ( ( X `  x
)  x.  ( X `
 y ) )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) ) )
8935, 84, 88mpsyl 61 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) ) )
90 1z 10267 . . . . . 6  |-  1  e.  ZZ
9114, 7, 15, 8, 9, 3lgsdchrval 21084 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  1  e.  ZZ )  ->  ( X `
 ( L ` 
1 ) )  =  ( 1  / L N ) )
9290, 91mpan2 653 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( L `  1 ) )  =  ( 1  / L N ) )
93 eqid 2404 . . . . . . . 8  |-  ( 1r
`  Z )  =  ( 1r `  Z
)
949, 93zrh1 16749 . . . . . . 7  |-  ( Z  e.  Ring  ->  ( L `
 1 )  =  ( 1r `  Z
) )
9548, 94syl 16 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( L ` 
1 )  =  ( 1r `  Z ) )
9695fveq2d 5691 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( L `  1 ) )  =  ( X `
 ( 1r `  Z ) ) )
9718adantr 452 . . . . . 6  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  ZZ )
98 1lgs 21074 . . . . . 6  |-  ( N  e.  ZZ  ->  (
1  / L N
)  =  1 )
9997, 98syl 16 . . . . 5  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( 1  / L N )  =  1 )
10092, 96, 993eqtr3d 2444 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X `  ( 1r `  Z ) )  =  1 )
101 lgsne0 21070 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( a  / L N )  =/=  0  <->  ( a  gcd  N )  =  1 ) )
10217, 19, 101syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( a  / L N
)  =/=  0  <->  (
a  gcd  N )  =  1 ) )
103102biimpd 199 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( a  / L N
)  =/=  0  -> 
( a  gcd  N
)  =  1 ) )
10416neeq1d 2580 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( X `  ( L `
 a ) )  =/=  0  <->  ( a  / L N )  =/=  0 ) )
1057, 34, 9znunit 16799 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  a  e.  ZZ )  ->  ( ( L `  a )  e.  (Unit `  Z )  <->  ( a  gcd  N )  =  1 ) )
1066, 105sylan 458 . . . . . . . . . 10  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( L `  a )  e.  (Unit `  Z
)  <->  ( a  gcd 
N )  =  1 ) )
107103, 104, 1063imtr4d 260 . . . . . . . . 9  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( ( X `  ( L `
 a ) )  =/=  0  ->  ( L `  a )  e.  (Unit `  Z )
) )
10824neeq1d 2580 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  (
( X `  x
)  =/=  0  <->  ( X `  ( L `  a ) )  =/=  0 ) )
109 eleq1 2464 . . . . . . . . . 10  |-  ( x  =  ( L `  a )  ->  (
x  e.  (Unit `  Z )  <->  ( L `  a )  e.  (Unit `  Z ) ) )
110108, 109imbi12d 312 . . . . . . . . 9  |-  ( x  =  ( L `  a )  ->  (
( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z ) )  <->  ( ( X `  ( L `  a ) )  =/=  0  ->  ( L `  a )  e.  (Unit `  Z ) ) ) )
111107, 110syl5ibrcom 214 . . . . . . . 8  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  a  e.  ZZ )  ->  ( x  =  ( L `  a )  ->  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) ) )
112111rexlimdva 2790 . . . . . . 7  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( E. a  e.  ZZ  x  =  ( L `  a )  ->  ( ( X `
 x )  =/=  0  ->  x  e.  (Unit `  Z ) ) ) )
113112imp 419 . . . . . 6  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  E. a  e.  ZZ  x  =  ( L `  a ) )  ->  ( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z )
) )
11413, 113syldan 457 . . . . 5  |-  ( ( ( N  e.  NN  /\ 
-.  2  ||  N
)  /\  x  e.  B )  ->  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) )
115114ralrimiva 2749 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  A. x  e.  B  ( ( X `  x )  =/=  0  ->  x  e.  (Unit `  Z ) ) )
11689, 100, 1153jca 1134 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( A. x  e.  (Unit `  Z ) A. y  e.  (Unit `  Z ) ( X `
 ( x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y )
)  /\  ( X `  ( 1r `  Z
) )  =  1  /\  A. x  e.  B  ( ( X `
 x )  =/=  0  ->  x  e.  (Unit `  Z ) ) ) )
117 simpl 444 . . . 4  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  N  e.  NN )
11814, 7, 8, 34, 117, 15dchrelbas3 20975 . . 3  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  <->  ( X : B
--> CC  /\  ( A. x  e.  (Unit `  Z
) A. y  e.  (Unit `  Z )
( X `  (
x ( .r `  Z ) y ) )  =  ( ( X `  x )  x.  ( X `  y ) )  /\  ( X `  ( 1r
`  Z ) )  =  1  /\  A. x  e.  B  (
( X `  x
)  =/=  0  ->  x  e.  (Unit `  Z
) ) ) ) ) )
11933, 116, 118mpbir2and 889 . 2  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  X  e.  D
)
120119, 30jca 519 1  |-  ( ( N  e.  NN  /\  -.  2  ||  N )  ->  ( X  e.  D  /\  X : B
--> RR ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   A.wral 2666   E.wrex 2667   _Vcvv 2916    C_ wss 3280   class class class wbr 4172    e. cmpt 4226   iotacio 5375   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951   NNcn 9956   2c2 10005   NN0cn0 10177   ZZcz 10238    || cdivides 12807    gcd cgcd 12961   Basecbs 13424   ↾s cress 13425   .rcmulr 13485   Ringcrg 15615   CRingccrg 15616   1rcur 15617  Unitcui 15699   RingHom crh 15772  ℂfldccnfld 16658   ZRHomczrh 16733  ℤ/nczn 16736  DChrcdchr 20969    / Lclgs 21031
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-2o 6684  df-oadd 6687  df-er 6864  df-ec 6866  df-qs 6870  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-card 7782  df-cda 8004  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fzo 11091  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-hash 11574  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-prm 13035  df-phi 13110  df-pc 13166  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-0g 13682  df-imas 13689  df-divs 13690  df-mnd 14645  df-mhm 14693  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-nsg 14897  df-eqg 14898  df-ghm 14959  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-rnghom 15774  df-subrg 15821  df-lmod 15907  df-lss 15964  df-lsp 16003  df-sra 16199  df-rgmod 16200  df-lidl 16201  df-rsp 16202  df-2idl 16258  df-cnfld 16659  df-zrh 16737  df-zn 16740  df-dchr 20970  df-lgs 21032
  Copyright terms: Public domain W3C validator