MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgscllem Structured version   Unicode version

Theorem lgscllem 23299
Description: The Legendre symbol is an element of  Z. (Contributed by Mario Carneiro, 4-Feb-2015.)
Hypotheses
Ref Expression
lgsval.1  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
lgsfcl2.z  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
Assertion
Ref Expression
lgscllem  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Distinct variable groups:    x, n, A    x, F    n, N, x    n, Z
Allowed substitution hints:    F( n)    Z( x)

Proof of Theorem lgscllem
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lgsval.1 . . 3  |-  F  =  ( n  e.  NN  |->  if ( n  e.  Prime ,  ( if ( n  =  2 ,  if ( 2  ||  A ,  0 ,  if ( ( A  mod  8 )  e.  {
1 ,  7 } ,  1 ,  -u
1 ) ) ,  ( ( ( ( A ^ ( ( n  -  1 )  /  2 ) )  +  1 )  mod  n )  -  1 ) ) ^ (
n  pCnt  N )
) ,  1 ) )
21lgsval 23296 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  =  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) ) ) )
3 lgsfcl2.z . . . . . . 7  |-  Z  =  { x  e.  ZZ  |  ( abs `  x
)  <_  1 }
43lgslem2 23293 . . . . . 6  |-  ( -u
1  e.  Z  /\  0  e.  Z  /\  1  e.  Z )
54simp3i 1002 . . . . 5  |-  1  e.  Z
64simp2i 1001 . . . . 5  |-  0  e.  Z
75, 6keepel 4000 . . . 4  |-  if ( ( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z
87a1i 11 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =  0 )  ->  if (
( A ^ 2 )  =  1 ,  1 ,  0 )  e.  Z )
94simp1i 1000 . . . . 5  |-  -u 1  e.  Z
109, 5keepel 4000 . . . 4  |-  if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  e.  Z
11 simplr 754 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  e.  ZZ )
12 simpr 461 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  -.  N  =  0 )
1312neqned 2663 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  N  =/=  0 )
14 nnabscl 13107 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  N  =/=  0 )  -> 
( abs `  N
)  e.  NN )
1511, 13, 14syl2anc 661 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( abs `  N )  e.  NN )
16 nnuz 11106 . . . . . 6  |-  NN  =  ( ZZ>= `  1 )
1715, 16syl6eleq 2558 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( abs `  N )  e.  ( ZZ>= `  1 )
)
18 df-ne 2657 . . . . . . 7  |-  ( N  =/=  0  <->  -.  N  =  0 )
191, 3lgsfcl2 23298 . . . . . . . 8  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ  /\  N  =/=  0 )  ->  F : NN --> Z )
20193expa 1191 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  N  =/=  0
)  ->  F : NN
--> Z )
2118, 20sylan2br 476 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  F : NN --> Z )
22 elfznn 11703 . . . . . 6  |-  ( y  e.  ( 1 ... ( abs `  N
) )  ->  y  e.  NN )
23 ffvelrn 6010 . . . . . 6  |-  ( ( F : NN --> Z  /\  y  e.  NN )  ->  ( F `  y
)  e.  Z )
2421, 22, 23syl2an 477 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  y  e.  ( 1 ... ( abs `  N ) ) )  ->  ( F `  y )  e.  Z
)
253lgslem3 23294 . . . . . 6  |-  ( ( y  e.  Z  /\  z  e.  Z )  ->  ( y  x.  z
)  e.  Z )
2625adantl 466 . . . . 5  |-  ( ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  /\  ( y  e.  Z  /\  z  e.  Z ) )  -> 
( y  x.  z
)  e.  Z )
2717, 24, 26seqcl 12083 . . . 4  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )
283lgslem3 23294 . . . 4  |-  ( ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  e.  Z  /\  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) )  e.  Z )  -> 
( if ( ( N  <  0  /\  A  <  0 ) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `  ( abs `  N ) ) )  e.  Z )
2910, 27, 28sylancr 663 . . 3  |-  ( ( ( A  e.  ZZ  /\  N  e.  ZZ )  /\  -.  N  =  0 )  ->  ( if ( ( N  <  0  /\  A  <  0 ) ,  -u
1 ,  1 )  x.  (  seq 1
(  x.  ,  F
) `  ( abs `  N ) ) )  e.  Z )
308, 29ifclda 3964 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  if ( N  =  0 ,  if ( ( A ^ 2 )  =  1 ,  1 ,  0 ) ,  ( if ( ( N  <  0  /\  A  <  0
) ,  -u 1 ,  1 )  x.  (  seq 1 (  x.  ,  F ) `
 ( abs `  N
) ) ) )  e.  Z )
312, 30eqeltrd 2548 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  Z
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2655   {crab 2811   ifcif 3932   {cpr 4022   class class class wbr 4440    |-> cmpt 4498   -->wf 5575   ` cfv 5579  (class class class)co 6275   0cc0 9481   1c1 9482    + caddc 9484    x. cmul 9486    < clt 9617    <_ cle 9618    - cmin 9794   -ucneg 9795    / cdiv 10195   NNcn 10525   2c2 10574   7c7 10579   8c8 10580   ZZcz 10853   ZZ>=cuz 11071   ...cfz 11661    mod cmo 11952    seqcseq 12063   ^cexp 12122   abscabs 13017    || cdivides 13836   Primecprime 14065    pCnt cpc 14208    /Lclgs 23290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-card 8309  df-cda 8537  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-q 11172  df-rp 11210  df-fz 11662  df-fzo 11782  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-hash 12361  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-dvds 13837  df-gcd 13993  df-prm 14066  df-phi 14144  df-pc 14209  df-lgs 23291
This theorem is referenced by:  lgscl2  23304
  Copyright terms: Public domain W3C validator