MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsabs1 Structured version   Unicode version

Theorem lgsabs1 23990
Description: The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsabs1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )

Proof of Theorem lgsabs1
StepHypRef Expression
1 lgscl 23966 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
21zcnd 11009 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  CC )
32abscld 13416 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  e.  RR )
4 1re 9625 . . 3  |-  1  e.  RR
5 letri3 9701 . . 3  |-  ( ( ( abs `  ( A  /L N ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  (
( abs `  ( A  /L N ) )  <_  1  /\  1  <_  ( abs `  ( A  /L N ) ) ) ) )
63, 4, 5sylancl 660 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  (
( abs `  ( A  /L N ) )  <_  1  /\  1  <_  ( abs `  ( A  /L N ) ) ) ) )
7 lgsle1 23967 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  <_  1 )
87biantrurd 506 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  ( abs `  ( A  /L N ) )  <-> 
( ( abs `  ( A  /L N ) )  <_  1  /\  1  <_  ( abs `  ( A  /L N ) ) ) ) )
9 nnne0 10609 . . . 4  |-  ( ( abs `  ( A  /L N ) )  e.  NN  ->  ( abs `  ( A  /L N ) )  =/=  0 )
10 nn0abscl 13294 . . . . . . . 8  |-  ( ( A  /L N )  e.  ZZ  ->  ( abs `  ( A  /L N ) )  e.  NN0 )
111, 10syl 17 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  e.  NN0 )
12 elnn0 10838 . . . . . . 7  |-  ( ( abs `  ( A  /L N ) )  e.  NN0  <->  ( ( abs `  ( A  /L N ) )  e.  NN  \/  ( abs `  ( A  /L N ) )  =  0 ) )
1311, 12sylib 196 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  e.  NN  \/  ( abs `  ( A  /L N ) )  =  0 ) )
1413ord 375 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( abs `  ( A  /L
N ) )  e.  NN  ->  ( abs `  ( A  /L
N ) )  =  0 ) )
1514necon1ad 2619 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =/=  0  -> 
( abs `  ( A  /L N ) )  e.  NN ) )
169, 15impbid2 204 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  e.  NN  <->  ( abs `  ( A  /L
N ) )  =/=  0 ) )
17 elnnnn0c 10882 . . . . 5  |-  ( ( abs `  ( A  /L N ) )  e.  NN  <->  ( ( abs `  ( A  /L N ) )  e.  NN0  /\  1  <_  ( abs `  ( A  /L N ) ) ) )
1817baib 904 . . . 4  |-  ( ( abs `  ( A  /L N ) )  e.  NN0  ->  ( ( abs `  ( A  /L N ) )  e.  NN  <->  1  <_  ( abs `  ( A  /L N ) ) ) )
1911, 18syl 17 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  e.  NN  <->  1  <_  ( abs `  ( A  /L N ) ) ) )
20 abs00 13271 . . . . . 6  |-  ( ( A  /L N )  e.  CC  ->  ( ( abs `  ( A  /L N ) )  =  0  <->  ( A  /L N )  =  0 ) )
2120necon3bid 2661 . . . . 5  |-  ( ( A  /L N )  e.  CC  ->  ( ( abs `  ( A  /L N ) )  =/=  0  <->  ( A  /L N )  =/=  0 ) )
222, 21syl 17 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =/=  0  <->  ( A  /L N )  =/=  0 ) )
23 lgsne0 23989 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
2422, 23bitrd 253 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
2516, 19, 243bitr3d 283 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  ( abs `  ( A  /L N ) )  <-> 
( A  gcd  N
)  =  1 ) )
266, 8, 253bitr2d 281 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   class class class wbr 4395   ` cfv 5569  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522   1c1 9523    <_ cle 9659   NNcn 10576   NN0cn0 10836   ZZcz 10905   abscabs 13216    gcd cgcd 14353    /Lclgs 23950
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-pre-sup 9600
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-2o 7168  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-card 8352  df-cda 8580  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-3 10636  df-n0 10837  df-z 10906  df-uz 11128  df-q 11228  df-rp 11266  df-fz 11727  df-fzo 11855  df-fl 11966  df-mod 12035  df-seq 12152  df-exp 12211  df-hash 12453  df-cj 13081  df-re 13082  df-im 13083  df-sqrt 13217  df-abs 13218  df-dvds 14196  df-gcd 14354  df-prm 14427  df-phi 14505  df-pc 14570  df-lgs 23951
This theorem is referenced by:  lgssq  23991  lgssq2  23992  lgsquad3  24017
  Copyright terms: Public domain W3C validator