MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgsabs1 Structured version   Unicode version

Theorem lgsabs1 22632
Description: The Legendre symbol is nonzero (and hence equal to  1 or  -u 1) precisely when the arguments are coprime. (Contributed by Mario Carneiro, 5-Feb-2015.)
Assertion
Ref Expression
lgsabs1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )

Proof of Theorem lgsabs1
StepHypRef Expression
1 lgscl 22608 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  ZZ )
21zcnd 10744 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( A  /L
N )  e.  CC )
32abscld 12918 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  e.  RR )
4 1re 9381 . . 3  |-  1  e.  RR
5 letri3 9456 . . 3  |-  ( ( ( abs `  ( A  /L N ) )  e.  RR  /\  1  e.  RR )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  (
( abs `  ( A  /L N ) )  <_  1  /\  1  <_  ( abs `  ( A  /L N ) ) ) ) )
63, 4, 5sylancl 657 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  (
( abs `  ( A  /L N ) )  <_  1  /\  1  <_  ( abs `  ( A  /L N ) ) ) ) )
7 lgsle1 22609 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  <_  1 )
87biantrurd 505 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  ( abs `  ( A  /L N ) )  <-> 
( ( abs `  ( A  /L N ) )  <_  1  /\  1  <_  ( abs `  ( A  /L N ) ) ) ) )
9 nnne0 10350 . . . 4  |-  ( ( abs `  ( A  /L N ) )  e.  NN  ->  ( abs `  ( A  /L N ) )  =/=  0 )
10 nn0abscl 12797 . . . . . . . 8  |-  ( ( A  /L N )  e.  ZZ  ->  ( abs `  ( A  /L N ) )  e.  NN0 )
111, 10syl 16 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( abs `  ( A  /L N ) )  e.  NN0 )
12 elnn0 10577 . . . . . . 7  |-  ( ( abs `  ( A  /L N ) )  e.  NN0  <->  ( ( abs `  ( A  /L N ) )  e.  NN  \/  ( abs `  ( A  /L N ) )  =  0 ) )
1311, 12sylib 196 . . . . . 6  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  e.  NN  \/  ( abs `  ( A  /L N ) )  =  0 ) )
1413ord 377 . . . . 5  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( abs `  ( A  /L
N ) )  e.  NN  ->  ( abs `  ( A  /L
N ) )  =  0 ) )
1514necon1ad 2676 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =/=  0  -> 
( abs `  ( A  /L N ) )  e.  NN ) )
169, 15impbid2 204 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  e.  NN  <->  ( abs `  ( A  /L
N ) )  =/=  0 ) )
17 elnnnn0c 10621 . . . . 5  |-  ( ( abs `  ( A  /L N ) )  e.  NN  <->  ( ( abs `  ( A  /L N ) )  e.  NN0  /\  1  <_  ( abs `  ( A  /L N ) ) ) )
1817baib 891 . . . 4  |-  ( ( abs `  ( A  /L N ) )  e.  NN0  ->  ( ( abs `  ( A  /L N ) )  e.  NN  <->  1  <_  ( abs `  ( A  /L N ) ) ) )
1911, 18syl 16 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  e.  NN  <->  1  <_  ( abs `  ( A  /L N ) ) ) )
20 abs00 12774 . . . . . 6  |-  ( ( A  /L N )  e.  CC  ->  ( ( abs `  ( A  /L N ) )  =  0  <->  ( A  /L N )  =  0 ) )
2120necon3bid 2641 . . . . 5  |-  ( ( A  /L N )  e.  CC  ->  ( ( abs `  ( A  /L N ) )  =/=  0  <->  ( A  /L N )  =/=  0 ) )
222, 21syl 16 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =/=  0  <->  ( A  /L N )  =/=  0 ) )
23 lgsne0 22631 . . . 4  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( A  /L N )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
2422, 23bitrd 253 . . 3  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =/=  0  <->  ( A  gcd  N )  =  1 ) )
2516, 19, 243bitr3d 283 . 2  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( 1  <_  ( abs `  ( A  /L N ) )  <-> 
( A  gcd  N
)  =  1 ) )
266, 8, 253bitr2d 281 1  |-  ( ( A  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( abs `  ( A  /L N ) )  =  1  <->  ( A  gcd  N )  =  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    <_ cle 9415   NNcn 10318   NN0cn0 10575   ZZcz 10642   abscabs 12719    gcd cgcd 13686    /Lclgs 22592
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-2o 6917  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-card 8105  df-cda 8333  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950  df-rp 10988  df-fz 11434  df-fzo 11545  df-fl 11638  df-mod 11705  df-seq 11803  df-exp 11862  df-hash 12100  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721  df-dvds 13532  df-gcd 13687  df-prm 13760  df-phi 13837  df-pc 13900  df-lgs 22593
This theorem is referenced by:  lgssq  22633  lgssq2  22634  lgsquad3  22659
  Copyright terms: Public domain W3C validator