MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamucov Structured version   Unicode version

Theorem lgamucov 23962
Description: The  U regions used in the proof of lgamgulm 23959 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u  |-  U  =  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) ) }
lgamucov.a  |-  ( ph  ->  A  e.  ( CC 
\  ( ZZ  \  NN ) ) )
lgamucov.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
lgamucov  |-  ( ph  ->  E. r  e.  NN  A  e.  ( ( int `  J ) `  U ) )
Distinct variable groups:    k, r, x, A    ph, k, r, x
Allowed substitution hints:    U( x, k, r)    J( x, k, r)

Proof of Theorem lgamucov
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 cnxmet 21792 . . . 4  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
21a1i 11 . . 3  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
3 difss 3592 . . . . 5  |-  ( ZZ 
\  NN )  C_  ZZ
4 lgamucov.j . . . . . 6  |-  J  =  ( TopOpen ` fld )
54sszcld 21834 . . . . 5  |-  ( ( ZZ  \  NN ) 
C_  ZZ  ->  ( ZZ 
\  NN )  e.  ( Clsd `  J
) )
64cnfldtopon 21802 . . . . . . 7  |-  J  e.  (TopOn `  CC )
76toponunii 19946 . . . . . 6  |-  CC  =  U. J
87cldopn 20045 . . . . 5  |-  ( ( ZZ  \  NN )  e.  ( Clsd `  J
)  ->  ( CC  \  ( ZZ  \  NN ) )  e.  J
)
93, 5, 8mp2b 10 . . . 4  |-  ( CC 
\  ( ZZ  \  NN ) )  e.  J
109a1i 11 . . 3  |-  ( ph  ->  ( CC  \  ( ZZ  \  NN ) )  e.  J )
11 lgamucov.a . . 3  |-  ( ph  ->  A  e.  ( CC 
\  ( ZZ  \  NN ) ) )
124cnfldtopn 21801 . . . 4  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
1312mopni2 21507 . . 3  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( CC  \  ( ZZ  \  NN ) )  e.  J  /\  A  e.  ( CC  \  ( ZZ  \  NN ) ) )  ->  E. a  e.  RR+  ( A (
ball `  ( abs  o. 
-  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) )
142, 10, 11, 13syl3anc 1264 . 2  |-  ( ph  ->  E. a  e.  RR+  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) )
1511eldifad 3448 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1615adantr 466 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  A  e.  CC )
1716abscld 13498 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( abs `  A
)  e.  RR )
18 simprl 762 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  a  e.  RR+ )
1918rpred 11349 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  a  e.  RR )
2017, 19readdcld 9678 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( ( abs `  A )  +  a )  e.  RR )
21 2re 10687 . . . . . . 7  |-  2  e.  RR
2221a1i 11 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  2  e.  RR )
2322, 18rerpdivcld 11377 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( 2  / 
a )  e.  RR )
2420, 23readdcld 9678 . . . 4  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  e.  RR )
25 arch 10874 . . . 4  |-  ( ( ( ( abs `  A
)  +  a )  +  ( 2  / 
a ) )  e.  RR  ->  E. r  e.  NN  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)
2624, 25syl 17 . . 3  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  E. r  e.  NN  ( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  <  r )
274cnfldtop 21803 . . . . . . . 8  |-  J  e. 
Top
2827a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  J  e.  Top )
29 lgamucov.u . . . . . . . . 9  |-  U  =  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) ) }
30 ssrab2 3546 . . . . . . . . 9  |-  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r )  <_ 
( abs `  (
x  +  k ) ) ) }  C_  CC
3129, 30eqsstri 3494 . . . . . . . 8  |-  U  C_  CC
3231a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  U  C_  CC )
331a1i 11 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( abs  o. 
-  )  e.  ( *Met `  CC ) )
3416ad2antrr 730 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  A  e.  CC )
3518ad2antrr 730 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  a  e.  RR+ )
3635rphalfcld 11361 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( a  /  2 )  e.  RR+ )
3736rpxrd 11350 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( a  /  2 )  e. 
RR* )
3812blopn 21514 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  e.  CC  /\  (
a  /  2 )  e.  RR* )  ->  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  e.  J
)
3933, 34, 37, 38syl3anc 1264 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( A
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  e.  J )
40 simplr 760 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  ->  x  e.  CC )
4140abscld 13498 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  e.  RR )
42 simp-4r 775 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
r  e.  NN )
4342nnred 10632 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
r  e.  RR )
4424ad4antr 736 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  e.  RR )
4520ad4antr 736 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  A
)  +  a )  e.  RR )
4617ad4antr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  A
)  e.  RR )
4741, 46resubcld 10055 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  -  ( abs `  A ) )  e.  RR )
4819ad4antr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
a  e.  RR )
4948rehalfcld 10867 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( a  /  2
)  e.  RR )
5034ad2antrr 730 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  ->  A  e.  CC )
5140, 50subcld 9994 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( x  -  A
)  e.  CC )
5251abscld 13498 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  (
x  -  A ) )  e.  RR )
5340, 50abs2difd 13519 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  -  ( abs `  A ) )  <_ 
( abs `  (
x  -  A ) ) )
54 eqid 2422 . . . . . . . . . . . . . . . . . . . . 21  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
5554cnmetdval 21790 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A ( abs 
o.  -  ) x
)  =  ( abs `  ( A  -  x
) ) )
5650, 40, 55syl2anc 665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( A ( abs 
o.  -  ) x
)  =  ( abs `  ( A  -  x
) ) )
5750, 40abssubd 13515 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  ( A  -  x )
)  =  ( abs `  ( x  -  A
) ) )
5856, 57eqtrd 2463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( A ( abs 
o.  -  ) x
)  =  ( abs `  ( x  -  A
) ) )
59 simpr 462 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( A ( abs 
o.  -  ) x
)  <  ( a  /  2 ) )
6058, 59eqbrtrrd 4446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  (
x  -  A ) )  <  ( a  /  2 ) )
6147, 52, 49, 53, 60lelttrd 9801 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  -  ( abs `  A ) )  < 
( a  /  2
) )
6235ad2antrr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
a  e.  RR+ )
63 rphalflt 11337 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  RR+  ->  ( a  /  2 )  < 
a )
6462, 63syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( a  /  2
)  <  a )
6547, 49, 48, 61, 64lttrd 9804 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  -  ( abs `  A ) )  < 
a )
6641, 46, 48ltsubadd2d 10219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( ( abs `  x )  -  ( abs `  A ) )  <  a  <->  ( abs `  x )  <  (
( abs `  A
)  +  a ) ) )
6765, 66mpbid 213 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  <  ( ( abs `  A )  +  a ) )
68 2rp 11315 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR+
6968a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
2  e.  RR+ )
7069, 62rpdivcld 11366 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( 2  /  a
)  e.  RR+ )
7145, 70ltaddrpd 11379 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  A
)  +  a )  <  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) ) )
7241, 45, 44, 67, 71lttrd 9804 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  <  ( (
( abs `  A
)  +  a )  +  ( 2  / 
a ) ) )
73 simpllr 767 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  <  r )
7441, 44, 43, 72, 73lttrd 9804 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  <  r )
7541, 43, 74ltled 9791 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  <_  r )
7642adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
r  e.  NN )
7776nnrecred 10663 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  e.  RR )
78 simpllr 767 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  x  e.  CC )
79 simpr 462 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
8079nn0cnd 10935 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
k  e.  CC )
8178, 80addcld 9670 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x  +  k )  e.  CC )
8281abscld 13498 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( abs `  (
x  +  k ) )  e.  RR )
8349adantr 466 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( a  /  2
)  e.  RR )
8423ad5antr 738 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 2  /  a
)  e.  RR )
8544adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  e.  RR )
8643adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
r  e.  RR )
8750adantr 466 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  A  e.  CC )
8811ad6antr 740 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  A  e.  ( CC  \  ( ZZ  \  NN ) ) )
8988dmgmn0 23950 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  A  =/=  0 )
9087, 89absrpcld 13510 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( abs `  A
)  e.  RR+ )
9162adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
a  e.  RR+ )
9290, 91rpaddcld 11364 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( abs `  A
)  +  a )  e.  RR+ )
9384, 92ltaddrp2d 11380 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 2  /  a
)  <  ( (
( abs `  A
)  +  a )  +  ( 2  / 
a ) ) )
94 simp-4r 775 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  <  r )
9584, 85, 86, 93, 94lttrd 9804 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 2  /  a
)  <  r )
9670adantr 466 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 2  /  a
)  e.  RR+ )
9776nnrpd 11347 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
r  e.  RR+ )
9896, 97ltrecd 11367 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( 2  / 
a )  <  r  <->  ( 1  /  r )  <  ( 1  / 
( 2  /  a
) ) ) )
9995, 98mpbid 213 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  <  ( 1  /  ( 2  / 
a ) ) )
100 2cnd 10690 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
2  e.  CC )
10191rpcnd 11351 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
a  e.  CC )
102 2ne0 10710 . . . . . . . . . . . . . . . . 17  |-  2  =/=  0
103102a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
2  =/=  0 )
10491rpne0d 11354 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
a  =/=  0 )
105100, 101, 103, 104recdivd 10408 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  (
2  /  a ) )  =  ( a  /  2 ) )
10699, 105breqtrd 4448 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  <  ( a  /  2 ) )
107 eldmgm 23946 . . . . . . . . . . . . . . . . 17  |-  ( -u k  e.  ( CC  \  ( ZZ  \  NN ) )  <->  ( -u k  e.  CC  /\  -.  -u -u k  e.  NN0 ) )
108107simprbi 465 . . . . . . . . . . . . . . . 16  |-  ( -u k  e.  ( CC  \  ( ZZ  \  NN ) )  ->  -.  -u -u k  e.  NN0 )
10980negnegd 9985 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  -u -u k  =  k
)
110109, 79eqeltrd 2507 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  -u -u k  e.  NN0 )
111108, 110nsyl3 122 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  -.  -u k  e.  ( CC  \  ( ZZ 
\  NN ) ) )
1121a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( abs  o.  -  )  e.  ( *Met `  CC ) )
11337ad3antrrr 734 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( a  /  2
)  e.  RR* )
11480negcld 9981 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  -u k  e.  CC )
115 elbl2 21404 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( a  / 
2 )  e.  RR* )  /\  ( x  e.  CC  /\  -u k  e.  CC ) )  -> 
( -u k  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  ( x
( abs  o.  -  ) -u k )  <  (
a  /  2 ) ) )
116112, 113, 78, 114, 115syl22anc 1265 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( -u k  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  ( x
( abs  o.  -  ) -u k )  <  (
a  /  2 ) ) )
11754cnmetdval 21790 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  -u k  e.  CC )  ->  ( x ( abs  o.  -  ) -u k )  =  ( abs `  ( x  -  -u k ) ) )
11878, 114, 117syl2anc 665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x ( abs 
o.  -  ) -u k
)  =  ( abs `  ( x  -  -u k
) ) )
11978, 80subnegd 10001 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x  -  -u k
)  =  ( x  +  k ) )
120119fveq2d 5886 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( abs `  (
x  -  -u k
) )  =  ( abs `  ( x  +  k ) ) )
121118, 120eqtrd 2463 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x ( abs 
o.  -  ) -u k
)  =  ( abs `  ( x  +  k ) ) )
122121breq1d 4433 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( x ( abs  o.  -  ) -u k )  <  (
a  /  2 )  <-> 
( abs `  (
x  +  k ) )  <  ( a  /  2 ) ) )
12382, 83ltnled 9790 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( abs `  (
x  +  k ) )  <  ( a  /  2 )  <->  -.  (
a  /  2 )  <_  ( abs `  (
x  +  k ) ) ) )
124116, 122, 1233bitrd 282 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( -u k  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  -.  (
a  /  2 )  <_  ( abs `  (
x  +  k ) ) ) )
12548adantr 466 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
a  e.  RR )
126 simplr 760 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( A ( abs 
o.  -  ) x
)  <  ( a  /  2 ) )
127 elbl3 21406 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( a  / 
2 )  e.  RR* )  /\  ( x  e.  CC  /\  A  e.  CC ) )  -> 
( A  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  ( A
( abs  o.  -  )
x )  <  (
a  /  2 ) ) )
128112, 113, 78, 87, 127syl22anc 1265 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( A  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  ( A
( abs  o.  -  )
x )  <  (
a  /  2 ) ) )
129126, 128mpbird 235 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  A  e.  ( x
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) ) )
130 blhalf 21419 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  CC )  /\  ( a  e.  RR  /\  A  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2 ) ) ) )  ->  (
x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  C_  ( A ( ball `  ( abs  o.  -  ) ) a ) )
131112, 78, 125, 129, 130syl22anc 1265 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x ( ball `  ( abs  o.  -  ) ) ( a  /  2 ) ) 
C_  ( A (
ball `  ( abs  o. 
-  ) ) a ) )
132 simprr 764 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( A (
ball `  ( abs  o. 
-  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) )
133132ad5antr 738 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) )
134131, 133sstrd 3474 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x ( ball `  ( abs  o.  -  ) ) ( a  /  2 ) ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) )
135134sseld 3463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( -u k  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  ->  -u k  e.  ( CC  \  ( ZZ  \  NN ) ) ) )
136124, 135sylbird 238 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( -.  ( a  /  2 )  <_ 
( abs `  (
x  +  k ) )  ->  -u k  e.  ( CC  \  ( ZZ  \  NN ) ) ) )
137111, 136mt3d 128 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( a  /  2
)  <_  ( abs `  ( x  +  k ) ) )
13877, 83, 82, 106, 137ltletrd 9803 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  <  ( abs `  ( x  +  k ) ) )
13977, 82, 138ltled 9791 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) )
140139ralrimiva 2836 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  ->  A. k  e.  NN0  ( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) )
14175, 140jca 534 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  <_  r  /\  A. k  e.  NN0  (
1  /  r )  <_  ( abs `  (
x  +  k ) ) ) )
142141ex 435 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  ->  ( ( A ( abs  o.  -  ) x )  <  ( a  / 
2 )  ->  (
( abs `  x
)  <_  r  /\  A. k  e.  NN0  (
1  /  r )  <_  ( abs `  (
x  +  k ) ) ) ) )
143142ss2rabdv 3542 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  { x  e.  CC  |  ( A ( abs  o.  -  ) x )  < 
( a  /  2
) }  C_  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r )  <_ 
( abs `  (
x  +  k ) ) ) } )
144 blval 21400 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  e.  CC  /\  (
a  /  2 )  e.  RR* )  ->  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  =  {
x  e.  CC  | 
( A ( abs 
o.  -  ) x
)  <  ( a  /  2 ) } )
14533, 34, 37, 144syl3anc 1264 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( A
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  =  { x  e.  CC  |  ( A ( abs  o.  -  ) x )  < 
( a  /  2
) } )
14629a1i 11 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  U  =  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) ) } )
147143, 145, 1463sstr4d 3507 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( A
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  C_  U )
1487ssntr 20072 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  U  C_  CC )  /\  ( ( A (
ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  e.  J  /\  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  C_  U
) )  ->  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  C_  (
( int `  J
) `  U )
)
14928, 32, 39, 147, 148syl22anc 1265 . . . . . 6  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( A
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  C_  ( ( int `  J ) `  U ) )
150 blcntr 21427 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  e.  CC  /\  (
a  /  2 )  e.  RR+ )  ->  A  e.  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2 ) ) )
15133, 34, 36, 150syl3anc 1264 . . . . . 6  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  A  e.  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) ) )
152149, 151sseldd 3465 . . . . 5  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  A  e.  ( ( int `  J
) `  U )
)
153152ex 435 . . . 4  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  ->  ( ( ( ( abs `  A
)  +  a )  +  ( 2  / 
a ) )  < 
r  ->  A  e.  ( ( int `  J
) `  U )
) )
154153reximdva 2897 . . 3  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( E. r  e.  NN  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r  ->  E. r  e.  NN  A  e.  ( ( int `  J ) `  U ) ) )
15526, 154mpd 15 . 2  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  E. r  e.  NN  A  e.  ( ( int `  J ) `  U ) )
15614, 155rexlimddv 2918 1  |-  ( ph  ->  E. r  e.  NN  A  e.  ( ( int `  J ) `  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872    =/= wne 2614   A.wral 2771   E.wrex 2772   {crab 2775    \ cdif 3433    C_ wss 3436   class class class wbr 4423    o. ccom 4857   ` cfv 5601  (class class class)co 6306   CCcc 9545   RRcr 9546   0cc0 9547   1c1 9548    + caddc 9550   RR*cxr 9682    < clt 9683    <_ cle 9684    - cmin 9868   -ucneg 9869    / cdiv 10277   NNcn 10617   2c2 10667   NN0cn0 10877   ZZcz 10945   RR+crp 11310   abscabs 13298   TopOpenctopn 15320   *Metcxmt 18955   ballcbl 18957  ℂfldccnfld 18970   Topctop 19916   Clsdccld 20030   intcnt 20031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-rep 4536  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6598  ax-cnex 9603  ax-resscn 9604  ax-1cn 9605  ax-icn 9606  ax-addcl 9607  ax-addrcl 9608  ax-mulcl 9609  ax-mulrcl 9610  ax-mulcom 9611  ax-addass 9612  ax-mulass 9613  ax-distr 9614  ax-i2m1 9615  ax-1ne0 9616  ax-1rid 9617  ax-rnegex 9618  ax-rrecex 9619  ax-cnre 9620  ax-pre-lttri 9621  ax-pre-lttrn 9622  ax-pre-ltadd 9623  ax-pre-mulgt0 9624  ax-pre-sup 9625
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-nel 2617  df-ral 2776  df-rex 2777  df-reu 2778  df-rmo 2779  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-tp 4003  df-op 4005  df-uni 4220  df-int 4256  df-iun 4301  df-iin 4302  df-br 4424  df-opab 4483  df-mpt 4484  df-tr 4519  df-eprel 4764  df-id 4768  df-po 4774  df-so 4775  df-fr 4812  df-we 4814  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6268  df-ov 6309  df-oprab 6310  df-mpt2 6311  df-om 6708  df-1st 6808  df-2nd 6809  df-wrecs 7040  df-recs 7102  df-rdg 7140  df-1o 7194  df-oadd 7198  df-er 7375  df-map 7486  df-en 7582  df-dom 7583  df-sdom 7584  df-fin 7585  df-fi 7935  df-sup 7966  df-inf 7967  df-pnf 9685  df-mnf 9686  df-xr 9687  df-ltxr 9688  df-le 9689  df-sub 9870  df-neg 9871  df-div 10278  df-nn 10618  df-2 10676  df-3 10677  df-4 10678  df-5 10679  df-6 10680  df-7 10681  df-8 10682  df-9 10683  df-10 10684  df-n0 10878  df-z 10946  df-dec 11060  df-uz 11168  df-q 11273  df-rp 11311  df-xneg 11417  df-xadd 11418  df-xmul 11419  df-ioo 11647  df-fz 11793  df-fl 12035  df-seq 12221  df-exp 12280  df-cj 13163  df-re 13164  df-im 13165  df-sqrt 13299  df-abs 13300  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-plusg 15203  df-mulr 15204  df-starv 15205  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-rest 15321  df-topn 15322  df-topgen 15342  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-cnfld 18971  df-top 19920  df-bases 19921  df-topon 19922  df-topsp 19923  df-cld 20033  df-ntr 20034  df-xms 21334  df-ms 21335
This theorem is referenced by:  lgamucov2  23963
  Copyright terms: Public domain W3C validator