MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lgamucov Structured version   Visualization version   Unicode version

Theorem lgamucov 23975
Description: The  U regions used in the proof of lgamgulm 23972 have interiors which cover the entire domain of the Gamma function. (Contributed by Mario Carneiro, 6-Jul-2017.)
Hypotheses
Ref Expression
lgamucov.u  |-  U  =  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) ) }
lgamucov.a  |-  ( ph  ->  A  e.  ( CC 
\  ( ZZ  \  NN ) ) )
lgamucov.j  |-  J  =  ( TopOpen ` fld )
Assertion
Ref Expression
lgamucov  |-  ( ph  ->  E. r  e.  NN  A  e.  ( ( int `  J ) `  U ) )
Distinct variable groups:    k, r, x, A    ph, k, r, x
Allowed substitution hints:    U( x, k, r)    J( x, k, r)

Proof of Theorem lgamucov
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 cnxmet 21804 . . . 4  |-  ( abs 
o.  -  )  e.  ( *Met `  CC )
21a1i 11 . . 3  |-  ( ph  ->  ( abs  o.  -  )  e.  ( *Met `  CC ) )
3 difss 3528 . . . . 5  |-  ( ZZ 
\  NN )  C_  ZZ
4 lgamucov.j . . . . . 6  |-  J  =  ( TopOpen ` fld )
54sszcld 21846 . . . . 5  |-  ( ( ZZ  \  NN ) 
C_  ZZ  ->  ( ZZ 
\  NN )  e.  ( Clsd `  J
) )
64cnfldtopon 21814 . . . . . . 7  |-  J  e.  (TopOn `  CC )
76toponunii 19958 . . . . . 6  |-  CC  =  U. J
87cldopn 20057 . . . . 5  |-  ( ( ZZ  \  NN )  e.  ( Clsd `  J
)  ->  ( CC  \  ( ZZ  \  NN ) )  e.  J
)
93, 5, 8mp2b 10 . . . 4  |-  ( CC 
\  ( ZZ  \  NN ) )  e.  J
109a1i 11 . . 3  |-  ( ph  ->  ( CC  \  ( ZZ  \  NN ) )  e.  J )
11 lgamucov.a . . 3  |-  ( ph  ->  A  e.  ( CC 
\  ( ZZ  \  NN ) ) )
124cnfldtopn 21813 . . . 4  |-  J  =  ( MetOpen `  ( abs  o. 
-  ) )
1312mopni2 21519 . . 3  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( CC  \  ( ZZ  \  NN ) )  e.  J  /\  A  e.  ( CC  \  ( ZZ  \  NN ) ) )  ->  E. a  e.  RR+  ( A (
ball `  ( abs  o. 
-  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) )
142, 10, 11, 13syl3anc 1271 . 2  |-  ( ph  ->  E. a  e.  RR+  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) )
1511eldifad 3384 . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
1615adantr 471 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  A  e.  CC )
1716abscld 13509 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( abs `  A
)  e.  RR )
18 simprl 769 . . . . . . 7  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  a  e.  RR+ )
1918rpred 11331 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  a  e.  RR )
2017, 19readdcld 9657 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( ( abs `  A )  +  a )  e.  RR )
21 2re 10668 . . . . . . 7  |-  2  e.  RR
2221a1i 11 . . . . . 6  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  2  e.  RR )
2322, 18rerpdivcld 11359 . . . . 5  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( 2  / 
a )  e.  RR )
2420, 23readdcld 9657 . . . 4  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  e.  RR )
25 arch 10856 . . . 4  |-  ( ( ( ( abs `  A
)  +  a )  +  ( 2  / 
a ) )  e.  RR  ->  E. r  e.  NN  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)
2624, 25syl 17 . . 3  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  E. r  e.  NN  ( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  <  r )
274cnfldtop 21815 . . . . . . . 8  |-  J  e. 
Top
2827a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  J  e.  Top )
29 lgamucov.u . . . . . . . . 9  |-  U  =  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) ) }
30 ssrab2 3482 . . . . . . . . 9  |-  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r )  <_ 
( abs `  (
x  +  k ) ) ) }  C_  CC
3129, 30eqsstri 3430 . . . . . . . 8  |-  U  C_  CC
3231a1i 11 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  U  C_  CC )
331a1i 11 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( abs  o. 
-  )  e.  ( *Met `  CC ) )
3416ad2antrr 737 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  A  e.  CC )
3518ad2antrr 737 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  a  e.  RR+ )
3635rphalfcld 11343 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( a  /  2 )  e.  RR+ )
3736rpxrd 11332 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( a  /  2 )  e. 
RR* )
3812blopn 21526 . . . . . . . 8  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  e.  CC  /\  (
a  /  2 )  e.  RR* )  ->  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  e.  J
)
3933, 34, 37, 38syl3anc 1271 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( A
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  e.  J )
40 simplr 767 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  ->  x  e.  CC )
4140abscld 13509 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  e.  RR )
42 simp-4r 782 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
r  e.  NN )
4342nnred 10613 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
r  e.  RR )
4424ad4antr 743 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  e.  RR )
4520ad4antr 743 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  A
)  +  a )  e.  RR )
4617ad4antr 743 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  A
)  e.  RR )
4741, 46resubcld 10036 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  -  ( abs `  A ) )  e.  RR )
4819ad4antr 743 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
a  e.  RR )
4948rehalfcld 10849 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( a  /  2
)  e.  RR )
5034ad2antrr 737 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  ->  A  e.  CC )
5140, 50subcld 9973 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( x  -  A
)  e.  CC )
5251abscld 13509 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  (
x  -  A ) )  e.  RR )
5340, 50abs2difd 13530 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  -  ( abs `  A ) )  <_ 
( abs `  (
x  -  A ) ) )
54 eqid 2452 . . . . . . . . . . . . . . . . . . . . 21  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
5554cnmetdval 21802 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  CC  /\  x  e.  CC )  ->  ( A ( abs 
o.  -  ) x
)  =  ( abs `  ( A  -  x
) ) )
5650, 40, 55syl2anc 671 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( A ( abs 
o.  -  ) x
)  =  ( abs `  ( A  -  x
) ) )
5750, 40abssubd 13526 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  ( A  -  x )
)  =  ( abs `  ( x  -  A
) ) )
5856, 57eqtrd 2486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( A ( abs 
o.  -  ) x
)  =  ( abs `  ( x  -  A
) ) )
59 simpr 467 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( A ( abs 
o.  -  ) x
)  <  ( a  /  2 ) )
6058, 59eqbrtrrd 4397 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  (
x  -  A ) )  <  ( a  /  2 ) )
6147, 52, 49, 53, 60lelttrd 9780 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  -  ( abs `  A ) )  < 
( a  /  2
) )
6235ad2antrr 737 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
a  e.  RR+ )
63 rphalflt 11319 . . . . . . . . . . . . . . . . 17  |-  ( a  e.  RR+  ->  ( a  /  2 )  < 
a )
6462, 63syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( a  /  2
)  <  a )
6547, 49, 48, 61, 64lttrd 9783 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  -  ( abs `  A ) )  < 
a )
6641, 46, 48ltsubadd2d 10200 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( ( abs `  x )  -  ( abs `  A ) )  <  a  <->  ( abs `  x )  <  (
( abs `  A
)  +  a ) ) )
6765, 66mpbid 215 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  <  ( ( abs `  A )  +  a ) )
68 2rp 11297 . . . . . . . . . . . . . . . . 17  |-  2  e.  RR+
6968a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
2  e.  RR+ )
7069, 62rpdivcld 11348 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( 2  /  a
)  e.  RR+ )
7145, 70ltaddrpd 11361 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  A
)  +  a )  <  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) ) )
7241, 45, 44, 67, 71lttrd 9783 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  <  ( (
( abs `  A
)  +  a )  +  ( 2  / 
a ) ) )
73 simpllr 774 . . . . . . . . . . . . 13  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  <  r )
7441, 44, 43, 72, 73lttrd 9783 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  <  r )
7541, 43, 74ltled 9770 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( abs `  x
)  <_  r )
7642adantr 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
r  e.  NN )
7776nnrecred 10644 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  e.  RR )
78 simpllr 774 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  x  e.  CC )
79 simpr 467 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
k  e.  NN0 )
8079nn0cnd 10917 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
k  e.  CC )
8178, 80addcld 9649 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x  +  k )  e.  CC )
8281abscld 13509 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( abs `  (
x  +  k ) )  e.  RR )
8349adantr 471 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( a  /  2
)  e.  RR )
8423ad5antr 745 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 2  /  a
)  e.  RR )
8544adantr 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  e.  RR )
8643adantr 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
r  e.  RR )
8750adantr 471 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  A  e.  CC )
8811ad6antr 747 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  A  e.  ( CC  \  ( ZZ  \  NN ) ) )
8988dmgmn0 23963 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  A  =/=  0 )
9087, 89absrpcld 13521 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( abs `  A
)  e.  RR+ )
9162adantr 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
a  e.  RR+ )
9290, 91rpaddcld 11346 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( abs `  A
)  +  a )  e.  RR+ )
9384, 92ltaddrp2d 11362 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 2  /  a
)  <  ( (
( abs `  A
)  +  a )  +  ( 2  / 
a ) ) )
94 simp-4r 782 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( ( abs `  A )  +  a )  +  ( 2  /  a ) )  <  r )
9584, 85, 86, 93, 94lttrd 9783 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 2  /  a
)  <  r )
9670adantr 471 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 2  /  a
)  e.  RR+ )
9776nnrpd 11329 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
r  e.  RR+ )
9896, 97ltrecd 11349 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( 2  / 
a )  <  r  <->  ( 1  /  r )  <  ( 1  / 
( 2  /  a
) ) ) )
9995, 98mpbid 215 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  <  ( 1  /  ( 2  / 
a ) ) )
100 2cnd 10671 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
2  e.  CC )
10191rpcnd 11333 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
a  e.  CC )
102 2ne0 10691 . . . . . . . . . . . . . . . . 17  |-  2  =/=  0
103102a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
2  =/=  0 )
10491rpne0d 11336 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
a  =/=  0 )
105100, 101, 103, 104recdivd 10389 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  (
2  /  a ) )  =  ( a  /  2 ) )
10699, 105breqtrd 4399 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  <  ( a  /  2 ) )
107 eldmgm 23959 . . . . . . . . . . . . . . . . 17  |-  ( -u k  e.  ( CC  \  ( ZZ  \  NN ) )  <->  ( -u k  e.  CC  /\  -.  -u -u k  e.  NN0 ) )
108107simprbi 470 . . . . . . . . . . . . . . . 16  |-  ( -u k  e.  ( CC  \  ( ZZ  \  NN ) )  ->  -.  -u -u k  e.  NN0 )
10980negnegd 9964 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  -u -u k  =  k
)
110109, 79eqeltrd 2530 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  -u -u k  e.  NN0 )
111108, 110nsyl3 124 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  -.  -u k  e.  ( CC  \  ( ZZ 
\  NN ) ) )
1121a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( abs  o.  -  )  e.  ( *Met `  CC ) )
11337ad3antrrr 741 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( a  /  2
)  e.  RR* )
11480negcld 9960 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  -u k  e.  CC )
115 elbl2 21416 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( a  / 
2 )  e.  RR* )  /\  ( x  e.  CC  /\  -u k  e.  CC ) )  -> 
( -u k  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  ( x
( abs  o.  -  ) -u k )  <  (
a  /  2 ) ) )
116112, 113, 78, 114, 115syl22anc 1272 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( -u k  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  ( x
( abs  o.  -  ) -u k )  <  (
a  /  2 ) ) )
11754cnmetdval 21802 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( x  e.  CC  /\  -u k  e.  CC )  ->  ( x ( abs  o.  -  ) -u k )  =  ( abs `  ( x  -  -u k ) ) )
11878, 114, 117syl2anc 671 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x ( abs 
o.  -  ) -u k
)  =  ( abs `  ( x  -  -u k
) ) )
11978, 80subnegd 9980 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x  -  -u k
)  =  ( x  +  k ) )
120119fveq2d 5852 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( abs `  (
x  -  -u k
) )  =  ( abs `  ( x  +  k ) ) )
121118, 120eqtrd 2486 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x ( abs 
o.  -  ) -u k
)  =  ( abs `  ( x  +  k ) ) )
122121breq1d 4384 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( x ( abs  o.  -  ) -u k )  <  (
a  /  2 )  <-> 
( abs `  (
x  +  k ) )  <  ( a  /  2 ) ) )
12382, 83ltnled 9769 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( ( abs `  (
x  +  k ) )  <  ( a  /  2 )  <->  -.  (
a  /  2 )  <_  ( abs `  (
x  +  k ) ) ) )
124116, 122, 1233bitrd 287 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( -u k  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  -.  (
a  /  2 )  <_  ( abs `  (
x  +  k ) ) ) )
12548adantr 471 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
a  e.  RR )
126 simplr 767 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( A ( abs 
o.  -  ) x
)  <  ( a  /  2 ) )
127 elbl3 21418 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  ( a  / 
2 )  e.  RR* )  /\  ( x  e.  CC  /\  A  e.  CC ) )  -> 
( A  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  ( A
( abs  o.  -  )
x )  <  (
a  /  2 ) ) )
128112, 113, 78, 87, 127syl22anc 1272 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( A  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  <->  ( A
( abs  o.  -  )
x )  <  (
a  /  2 ) ) )
129126, 128mpbird 240 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  ->  A  e.  ( x
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) ) )
130 blhalf 21431 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  x  e.  CC )  /\  ( a  e.  RR  /\  A  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2 ) ) ) )  ->  (
x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  C_  ( A ( ball `  ( abs  o.  -  ) ) a ) )
131112, 78, 125, 129, 130syl22anc 1272 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x ( ball `  ( abs  o.  -  ) ) ( a  /  2 ) ) 
C_  ( A (
ball `  ( abs  o. 
-  ) ) a ) )
132 simprr 771 . . . . . . . . . . . . . . . . . . 19  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( A (
ball `  ( abs  o. 
-  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) )
133132ad5antr 745 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) )
134131, 133sstrd 3410 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( x ( ball `  ( abs  o.  -  ) ) ( a  /  2 ) ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) )
135134sseld 3399 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( -u k  e.  ( x ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  ->  -u k  e.  ( CC  \  ( ZZ  \  NN ) ) ) )
136124, 135sylbird 243 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( -.  ( a  /  2 )  <_ 
( abs `  (
x  +  k ) )  ->  -u k  e.  ( CC  \  ( ZZ  \  NN ) ) ) )
137111, 136mt3d 130 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( a  /  2
)  <_  ( abs `  ( x  +  k ) ) )
13877, 83, 82, 106, 137ltletrd 9782 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  <  ( abs `  ( x  +  k ) ) )
13977, 82, 138ltled 9770 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  /\  k  e.  NN0 )  -> 
( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) )
140139ralrimiva 2790 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  ->  A. k  e.  NN0  ( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) )
14175, 140jca 539 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  /\  ( A ( abs  o.  -  ) x )  <  ( a  / 
2 ) )  -> 
( ( abs `  x
)  <_  r  /\  A. k  e.  NN0  (
1  /  r )  <_  ( abs `  (
x  +  k ) ) ) )
142141ex 440 . . . . . . . . 9  |-  ( ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  /\  x  e.  CC )  ->  ( ( A ( abs  o.  -  ) x )  <  ( a  / 
2 )  ->  (
( abs `  x
)  <_  r  /\  A. k  e.  NN0  (
1  /  r )  <_  ( abs `  (
x  +  k ) ) ) ) )
143142ss2rabdv 3478 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  { x  e.  CC  |  ( A ( abs  o.  -  ) x )  < 
( a  /  2
) }  C_  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r )  <_ 
( abs `  (
x  +  k ) ) ) } )
144 blval 21412 . . . . . . . . 9  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  e.  CC  /\  (
a  /  2 )  e.  RR* )  ->  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  =  {
x  e.  CC  | 
( A ( abs 
o.  -  ) x
)  <  ( a  /  2 ) } )
14533, 34, 37, 144syl3anc 1271 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( A
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  =  { x  e.  CC  |  ( A ( abs  o.  -  ) x )  < 
( a  /  2
) } )
14629a1i 11 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  U  =  { x  e.  CC  |  ( ( abs `  x )  <_  r  /\  A. k  e.  NN0  ( 1  /  r
)  <_  ( abs `  ( x  +  k ) ) ) } )
147143, 145, 1463sstr4d 3443 . . . . . . 7  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( A
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  C_  U )
1487ssntr 20084 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  U  C_  CC )  /\  ( ( A (
ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  e.  J  /\  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  C_  U
) )  ->  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) )  C_  (
( int `  J
) `  U )
)
14928, 32, 39, 147, 148syl22anc 1272 . . . . . 6  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  ( A
( ball `  ( abs  o. 
-  ) ) ( a  /  2 ) )  C_  ( ( int `  J ) `  U ) )
150 blcntr 21439 . . . . . . 7  |-  ( ( ( abs  o.  -  )  e.  ( *Met `  CC )  /\  A  e.  CC  /\  (
a  /  2 )  e.  RR+ )  ->  A  e.  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2 ) ) )
15133, 34, 36, 150syl3anc 1271 . . . . . 6  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  A  e.  ( A ( ball `  ( abs  o.  -  ) ) ( a  /  2
) ) )
152149, 151sseldd 3401 . . . . 5  |-  ( ( ( ( ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a ) 
C_  ( CC  \ 
( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  /\  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r
)  ->  A  e.  ( ( int `  J
) `  U )
)
153152ex 440 . . . 4  |-  ( ( ( ph  /\  (
a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  /\  r  e.  NN )  ->  ( ( ( ( abs `  A
)  +  a )  +  ( 2  / 
a ) )  < 
r  ->  A  e.  ( ( int `  J
) `  U )
) )
154153reximdva 2839 . . 3  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  ( E. r  e.  NN  ( ( ( abs `  A )  +  a )  +  ( 2  /  a
) )  <  r  ->  E. r  e.  NN  A  e.  ( ( int `  J ) `  U ) ) )
15526, 154mpd 15 . 2  |-  ( (
ph  /\  ( a  e.  RR+  /\  ( A ( ball `  ( abs  o.  -  ) ) a )  C_  ( CC  \  ( ZZ  \  NN ) ) ) )  ->  E. r  e.  NN  A  e.  ( ( int `  J ) `  U ) )
15614, 155rexlimddv 2856 1  |-  ( ph  ->  E. r  e.  NN  A  e.  ( ( int `  J ) `  U ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 375    = wceq 1448    e. wcel 1891    =/= wne 2622   A.wral 2737   E.wrex 2738   {crab 2741    \ cdif 3369    C_ wss 3372   class class class wbr 4374    o. ccom 4816   ` cfv 5561  (class class class)co 6276   CCcc 9524   RRcr 9525   0cc0 9526   1c1 9527    + caddc 9529   RR*cxr 9661    < clt 9662    <_ cle 9663    - cmin 9847   -ucneg 9848    / cdiv 10258   NNcn 10598   2c2 10648   NN0cn0 10859   ZZcz 10927   RR+crp 11292   abscabs 13308   TopOpenctopn 15331   *Metcxmt 18966   ballcbl 18968  ℂfldccnfld 18981   Topctop 19928   Clsdccld 20042   intcnt 20043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1673  ax-4 1686  ax-5 1762  ax-6 1809  ax-7 1855  ax-8 1893  ax-9 1900  ax-10 1919  ax-11 1924  ax-12 1937  ax-13 2092  ax-ext 2432  ax-rep 4487  ax-sep 4497  ax-nul 4506  ax-pow 4554  ax-pr 4612  ax-un 6571  ax-cnex 9582  ax-resscn 9583  ax-1cn 9584  ax-icn 9585  ax-addcl 9586  ax-addrcl 9587  ax-mulcl 9588  ax-mulrcl 9589  ax-mulcom 9590  ax-addass 9591  ax-mulass 9592  ax-distr 9593  ax-i2m1 9594  ax-1ne0 9595  ax-1rid 9596  ax-rnegex 9597  ax-rrecex 9598  ax-cnre 9599  ax-pre-lttri 9600  ax-pre-lttrn 9601  ax-pre-ltadd 9602  ax-pre-mulgt0 9603  ax-pre-sup 9604
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 987  df-3an 988  df-tru 1451  df-ex 1668  df-nf 1672  df-sb 1802  df-eu 2304  df-mo 2305  df-clab 2439  df-cleq 2445  df-clel 2448  df-nfc 2582  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3015  df-sbc 3236  df-csb 3332  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-pss 3388  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4169  df-int 4205  df-iun 4250  df-iin 4251  df-br 4375  df-opab 4434  df-mpt 4435  df-tr 4470  df-eprel 4723  df-id 4727  df-po 4733  df-so 4734  df-fr 4771  df-we 4773  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-dm 4822  df-rn 4823  df-res 4824  df-ima 4825  df-pred 5359  df-ord 5405  df-on 5406  df-lim 5407  df-suc 5408  df-iota 5525  df-fun 5563  df-fn 5564  df-f 5565  df-f1 5566  df-fo 5567  df-f1o 5568  df-fv 5569  df-riota 6238  df-ov 6279  df-oprab 6280  df-mpt2 6281  df-om 6681  df-1st 6781  df-2nd 6782  df-wrecs 7015  df-recs 7077  df-rdg 7115  df-1o 7169  df-oadd 7173  df-er 7350  df-map 7461  df-en 7557  df-dom 7558  df-sdom 7559  df-fin 7560  df-fi 7912  df-sup 7943  df-inf 7944  df-pnf 9664  df-mnf 9665  df-xr 9666  df-ltxr 9667  df-le 9668  df-sub 9849  df-neg 9850  df-div 10259  df-nn 10599  df-2 10657  df-3 10658  df-4 10659  df-5 10660  df-6 10661  df-7 10662  df-8 10663  df-9 10664  df-10 10665  df-n0 10860  df-z 10928  df-dec 11042  df-uz 11150  df-q 11255  df-rp 11293  df-xneg 11399  df-xadd 11400  df-xmul 11401  df-ioo 11629  df-fz 11776  df-fl 12022  df-seq 12208  df-exp 12267  df-cj 13173  df-re 13174  df-im 13175  df-sqrt 13309  df-abs 13310  df-struct 15134  df-ndx 15135  df-slot 15136  df-base 15137  df-plusg 15214  df-mulr 15215  df-starv 15216  df-tset 15220  df-ple 15221  df-ds 15223  df-unif 15224  df-rest 15332  df-topn 15333  df-topgen 15353  df-psmet 18973  df-xmet 18974  df-met 18975  df-bl 18976  df-mopn 18977  df-cnfld 18982  df-top 19932  df-bases 19933  df-topon 19934  df-topsp 19935  df-cld 20045  df-ntr 20046  df-xms 21346  df-ms 21347
This theorem is referenced by:  lgamucov2  23976
  Copyright terms: Public domain W3C validator