Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi1 Structured version   Unicode version

Theorem lflvsdi1 32445
Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v  |-  V  =  ( Base `  W
)
lfldi.r  |-  R  =  (Scalar `  W )
lfldi.k  |-  K  =  ( Base `  R
)
lfldi.p  |-  .+  =  ( +g  `  R )
lfldi.t  |-  .x.  =  ( .r `  R )
lfldi.f  |-  F  =  (LFnl `  W )
lfldi.w  |-  ( ph  ->  W  e.  LMod )
lfldi.x  |-  ( ph  ->  X  e.  K )
lfldi1.g  |-  ( ph  ->  G  e.  F )
lfldi1.h  |-  ( ph  ->  H  e.  F )
Assertion
Ref Expression
lflvsdi1  |-  ( ph  ->  ( ( G  oF  .+  H )  oF  .x.  ( V  X.  { X }
) )  =  ( ( G  oF  .x.  ( V  X.  { X } ) )  oF  .+  ( H  oF  .x.  ( V  X.  { X }
) ) ) )

Proof of Theorem lflvsdi1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfldi.v . . . 4  |-  V  =  ( Base `  W
)
2 fvex 5698 . . . 4  |-  ( Base `  W )  e.  _V
31, 2eqeltri 2511 . . 3  |-  V  e. 
_V
43a1i 11 . 2  |-  ( ph  ->  V  e.  _V )
5 lfldi.x . . 3  |-  ( ph  ->  X  e.  K )
6 fconst6g 5596 . . 3  |-  ( X  e.  K  ->  ( V  X.  { X }
) : V --> K )
75, 6syl 16 . 2  |-  ( ph  ->  ( V  X.  { X } ) : V --> K )
8 lfldi.w . . 3  |-  ( ph  ->  W  e.  LMod )
9 lfldi1.g . . 3  |-  ( ph  ->  G  e.  F )
10 lfldi.r . . . 4  |-  R  =  (Scalar `  W )
11 lfldi.k . . . 4  |-  K  =  ( Base `  R
)
12 lfldi.f . . . 4  |-  F  =  (LFnl `  W )
1310, 11, 1, 12lflf 32430 . . 3  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G : V --> K )
148, 9, 13syl2anc 656 . 2  |-  ( ph  ->  G : V --> K )
15 lfldi1.h . . 3  |-  ( ph  ->  H  e.  F )
1610, 11, 1, 12lflf 32430 . . 3  |-  ( ( W  e.  LMod  /\  H  e.  F )  ->  H : V --> K )
178, 15, 16syl2anc 656 . 2  |-  ( ph  ->  H : V --> K )
1810lmodrng 16936 . . . 4  |-  ( W  e.  LMod  ->  R  e. 
Ring )
198, 18syl 16 . . 3  |-  ( ph  ->  R  e.  Ring )
20 lfldi.p . . . 4  |-  .+  =  ( +g  `  R )
21 lfldi.t . . . 4  |-  .x.  =  ( .r `  R )
2211, 20, 21rngdir 16654 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  K  /\  y  e.  K  /\  z  e.  K )
)  ->  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) )
2319, 22sylan 468 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  K ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
244, 7, 14, 17, 23caofdir 6356 1  |-  ( ph  ->  ( ( G  oF  .+  H )  oF  .x.  ( V  X.  { X }
) )  =  ( ( G  oF  .x.  ( V  X.  { X } ) )  oF  .+  ( H  oF  .x.  ( V  X.  { X }
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 960    = wceq 1364    e. wcel 1761   _Vcvv 2970   {csn 3874    X. cxp 4834   -->wf 5411   ` cfv 5415  (class class class)co 6090    oFcof 6317   Basecbs 14170   +g cplusg 14234   .rcmulr 14235  Scalarcsca 14237   Ringcrg 16635   LModclmod 16928  LFnlclfn 32424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-map 7212  df-rng 16637  df-lmod 16930  df-lfl 32425
This theorem is referenced by:  ldualvsdi1  32510
  Copyright terms: Public domain W3C validator