Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflvsdi1 Structured version   Unicode version

Theorem lflvsdi1 34904
Description: Distributive law for (right vector space) scalar product of functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfldi.v  |-  V  =  ( Base `  W
)
lfldi.r  |-  R  =  (Scalar `  W )
lfldi.k  |-  K  =  ( Base `  R
)
lfldi.p  |-  .+  =  ( +g  `  R )
lfldi.t  |-  .x.  =  ( .r `  R )
lfldi.f  |-  F  =  (LFnl `  W )
lfldi.w  |-  ( ph  ->  W  e.  LMod )
lfldi.x  |-  ( ph  ->  X  e.  K )
lfldi1.g  |-  ( ph  ->  G  e.  F )
lfldi1.h  |-  ( ph  ->  H  e.  F )
Assertion
Ref Expression
lflvsdi1  |-  ( ph  ->  ( ( G  oF  .+  H )  oF  .x.  ( V  X.  { X }
) )  =  ( ( G  oF  .x.  ( V  X.  { X } ) )  oF  .+  ( H  oF  .x.  ( V  X.  { X }
) ) ) )

Proof of Theorem lflvsdi1
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfldi.v . . . 4  |-  V  =  ( Base `  W
)
2 fvex 5882 . . . 4  |-  ( Base `  W )  e.  _V
31, 2eqeltri 2541 . . 3  |-  V  e. 
_V
43a1i 11 . 2  |-  ( ph  ->  V  e.  _V )
5 lfldi.x . . 3  |-  ( ph  ->  X  e.  K )
6 fconst6g 5780 . . 3  |-  ( X  e.  K  ->  ( V  X.  { X }
) : V --> K )
75, 6syl 16 . 2  |-  ( ph  ->  ( V  X.  { X } ) : V --> K )
8 lfldi.w . . 3  |-  ( ph  ->  W  e.  LMod )
9 lfldi1.g . . 3  |-  ( ph  ->  G  e.  F )
10 lfldi.r . . . 4  |-  R  =  (Scalar `  W )
11 lfldi.k . . . 4  |-  K  =  ( Base `  R
)
12 lfldi.f . . . 4  |-  F  =  (LFnl `  W )
1310, 11, 1, 12lflf 34889 . . 3  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G : V --> K )
148, 9, 13syl2anc 661 . 2  |-  ( ph  ->  G : V --> K )
15 lfldi1.h . . 3  |-  ( ph  ->  H  e.  F )
1610, 11, 1, 12lflf 34889 . . 3  |-  ( ( W  e.  LMod  /\  H  e.  F )  ->  H : V --> K )
178, 15, 16syl2anc 661 . 2  |-  ( ph  ->  H : V --> K )
1810lmodring 17646 . . . 4  |-  ( W  e.  LMod  ->  R  e. 
Ring )
198, 18syl 16 . . 3  |-  ( ph  ->  R  e.  Ring )
20 lfldi.p . . . 4  |-  .+  =  ( +g  `  R )
21 lfldi.t . . . 4  |-  .x.  =  ( .r `  R )
2211, 20, 21ringdir 17344 . . 3  |-  ( ( R  e.  Ring  /\  (
x  e.  K  /\  y  e.  K  /\  z  e.  K )
)  ->  ( (
x  .+  y )  .x.  z )  =  ( ( x  .x.  z
)  .+  ( y  .x.  z ) ) )
2319, 22sylan 471 . 2  |-  ( (
ph  /\  ( x  e.  K  /\  y  e.  K  /\  z  e.  K ) )  -> 
( ( x  .+  y )  .x.  z
)  =  ( ( x  .x.  z ) 
.+  ( y  .x.  z ) ) )
244, 7, 14, 17, 23caofdir 6576 1  |-  ( ph  ->  ( ( G  oF  .+  H )  oF  .x.  ( V  X.  { X }
) )  =  ( ( G  oF  .x.  ( V  X.  { X } ) )  oF  .+  ( H  oF  .x.  ( V  X.  { X }
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1395    e. wcel 1819   _Vcvv 3109   {csn 4032    X. cxp 5006   -->wf 5590   ` cfv 5594  (class class class)co 6296    oFcof 6537   Basecbs 14643   +g cplusg 14711   .rcmulr 14712  Scalarcsca 14714   Ringcrg 17324   LModclmod 17638  LFnlclfn 34883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-map 7440  df-ring 17326  df-lmod 17640  df-lfl 34884
This theorem is referenced by:  ldualvsdi1  34969
  Copyright terms: Public domain W3C validator