Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Unicode version

Theorem lflnegcl 34523
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 34594, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v  |-  V  =  ( Base `  W
)
lflnegcl.r  |-  R  =  (Scalar `  W )
lflnegcl.i  |-  I  =  ( invg `  R )
lflnegcl.n  |-  N  =  ( x  e.  V  |->  ( I `  ( G `  x )
) )
lflnegcl.f  |-  F  =  (LFnl `  W )
lflnegcl.w  |-  ( ph  ->  W  e.  LMod )
lflnegcl.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lflnegcl  |-  ( ph  ->  N  e.  F )
Distinct variable groups:    x, G    x, I    x, R    x, V    x, W    ph, x
Allowed substitution hints:    F( x)    N( x)

Proof of Theorem lflnegcl
Dummy variables  y 
k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
2 lflnegcl.r . . . . . . . 8  |-  R  =  (Scalar `  W )
32lmodring 17391 . . . . . . 7  |-  ( W  e.  LMod  ->  R  e. 
Ring )
41, 3syl 16 . . . . . 6  |-  ( ph  ->  R  e.  Ring )
5 ringgrp 17074 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
64, 5syl 16 . . . . 5  |-  ( ph  ->  R  e.  Grp )
76adantr 465 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  R  e.  Grp )
81adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  W  e.  LMod )
9 lflnegcl.g . . . . . 6  |-  ( ph  ->  G  e.  F )
109adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  G  e.  F )
11 simpr 461 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
12 eqid 2441 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
13 lflnegcl.v . . . . . 6  |-  V  =  ( Base `  W
)
14 lflnegcl.f . . . . . 6  |-  F  =  (LFnl `  W )
152, 12, 13, 14lflcl 34512 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  ( Base `  R
) )
168, 10, 11, 15syl3anc 1227 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  ( G `  x )  e.  ( Base `  R
) )
17 lflnegcl.i . . . . 5  |-  I  =  ( invg `  R )
1812, 17grpinvcl 15966 . . . 4  |-  ( ( R  e.  Grp  /\  ( G `  x )  e.  ( Base `  R
) )  ->  (
I `  ( G `  x ) )  e.  ( Base `  R
) )
197, 16, 18syl2anc 661 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
I `  ( G `  x ) )  e.  ( Base `  R
) )
20 lflnegcl.n . . 3  |-  N  =  ( x  e.  V  |->  ( I `  ( G `  x )
) )
2119, 20fmptd 6037 . 2  |-  ( ph  ->  N : V --> ( Base `  R ) )
22 ringabl 17099 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Abel )
234, 22syl 16 . . . . . . 7  |-  ( ph  ->  R  e.  Abel )
2423adantr 465 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  R  e.  Abel )
254adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  R  e.  Ring )
26 simpr1 1001 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  k  e.  ( Base `  R
) )
271adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  W  e.  LMod )
289adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  G  e.  F )
29 simpr2 1002 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  y  e.  V )
302, 12, 13, 14lflcl 34512 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  V )  ->  ( G `  y )  e.  ( Base `  R
) )
3127, 28, 29, 30syl3anc 1227 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  y )  e.  ( Base `  R
) )
32 eqid 2441 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
3312, 32ringcl 17083 . . . . . . 7  |-  ( ( R  e.  Ring  /\  k  e.  ( Base `  R
)  /\  ( G `  y )  e.  (
Base `  R )
)  ->  ( k
( .r `  R
) ( G `  y ) )  e.  ( Base `  R
) )
3425, 26, 31, 33syl3anc 1227 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( G `
 y ) )  e.  ( Base `  R
) )
35 simpr3 1003 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  z  e.  V )
362, 12, 13, 14lflcl 34512 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  z  e.  V )  ->  ( G `  z )  e.  ( Base `  R
) )
3727, 28, 35, 36syl3anc 1227 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  z )  e.  ( Base `  R
) )
38 eqid 2441 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
3912, 38, 17ablinvadd 16691 . . . . . 6  |-  ( ( R  e.  Abel  /\  (
k ( .r `  R ) ( G `
 y ) )  e.  ( Base `  R
)  /\  ( G `  z )  e.  (
Base `  R )
)  ->  ( I `  ( ( k ( .r `  R ) ( G `  y
) ) ( +g  `  R ) ( G `
 z ) ) )  =  ( ( I `  ( k ( .r `  R
) ( G `  y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4024, 34, 37, 39syl3anc 1227 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( (
k ( .r `  R ) ( G `
 y ) ) ( +g  `  R
) ( G `  z ) ) )  =  ( ( I `
 ( k ( .r `  R ) ( G `  y
) ) ) ( +g  `  R ) ( I `  ( G `  z )
) ) )
41 eqid 2441 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
42 eqid 2441 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
4313, 41, 2, 42, 12, 38, 32, 14lfli 34509 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
k  e.  ( Base `  R )  /\  y  e.  V  /\  z  e.  V ) )  -> 
( G `  (
( k ( .s
`  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( G `  y ) ) ( +g  `  R ) ( G `  z
) ) )
4427, 28, 26, 29, 35, 43syl113anc 1239 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( G `  y ) ) ( +g  `  R ) ( G `  z
) ) )
4544fveq2d 5857 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( I `  ( ( k ( .r `  R ) ( G `
 y ) ) ( +g  `  R
) ( G `  z ) ) ) )
4612, 32, 17, 25, 26, 31ringmneg2 17114 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( I `
 ( G `  y ) ) )  =  ( I `  ( k ( .r
`  R ) ( G `  y ) ) ) )
4746oveq1d 6293 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .r
`  R ) ( I `  ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) )  =  ( ( I `  (
k ( .r `  R ) ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4840, 45, 473eqtr4d 2492 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( ( k ( .r
`  R ) ( I `  ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4913, 2, 42, 12lmodvscl 17400 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  ( Base `  R
)  /\  y  e.  V )  ->  (
k ( .s `  W ) y )  e.  V )
5027, 26, 29, 49syl3anc 1227 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .s `  W ) y )  e.  V )
5113, 41lmodvacl 17397 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
k ( .s `  W ) y )  e.  V  /\  z  e.  V )  ->  (
( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
5227, 50, 35, 51syl3anc 1227 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
53 fveq2 5853 . . . . . . 7  |-  ( x  =  ( ( k ( .s `  W
) y ) ( +g  `  W ) z )  ->  ( G `  x )  =  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )
5453fveq2d 5857 . . . . . 6  |-  ( x  =  ( ( k ( .s `  W
) y ) ( +g  `  W ) z )  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
55 fvex 5863 . . . . . 6  |-  ( I `
 ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  e.  _V
5654, 20, 55fvmpt 5938 . . . . 5  |-  ( ( ( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V  ->  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( I `
 ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) ) )
5752, 56syl 16 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
58 fveq2 5853 . . . . . . . . 9  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
5958fveq2d 5857 . . . . . . . 8  |-  ( x  =  y  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  y )
) )
60 fvex 5863 . . . . . . . 8  |-  ( I `
 ( G `  y ) )  e. 
_V
6159, 20, 60fvmpt 5938 . . . . . . 7  |-  ( y  e.  V  ->  ( N `  y )  =  ( I `  ( G `  y ) ) )
6229, 61syl 16 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  y )  =  ( I `  ( G `  y ) ) )
6362oveq2d 6294 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( N `
 y ) )  =  ( k ( .r `  R ) ( I `  ( G `  y )
) ) )
64 fveq2 5853 . . . . . . . 8  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
6564fveq2d 5857 . . . . . . 7  |-  ( x  =  z  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  z )
) )
66 fvex 5863 . . . . . . 7  |-  ( I `
 ( G `  z ) )  e. 
_V
6765, 20, 66fvmpt 5938 . . . . . 6  |-  ( z  e.  V  ->  ( N `  z )  =  ( I `  ( G `  z ) ) )
6835, 67syl 16 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  z )  =  ( I `  ( G `  z ) ) )
6963, 68oveq12d 6296 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .r
`  R ) ( N `  y ) ) ( +g  `  R
) ( N `  z ) )  =  ( ( k ( .r `  R ) ( I `  ( G `  y )
) ) ( +g  `  R ) ( I `
 ( G `  z ) ) ) )
7048, 57, 693eqtr4d 2492 . . 3  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( N `  y ) ) ( +g  `  R ) ( N `  z
) ) )
7170ralrimivvva 2863 . 2  |-  ( ph  ->  A. k  e.  (
Base `  R ) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( N `  y ) ) ( +g  `  R ) ( N `  z
) ) )
7213, 41, 2, 42, 12, 38, 32, 14islfl 34508 . . 3  |-  ( W  e.  LMod  ->  ( N  e.  F  <->  ( N : V --> ( Base `  R
)  /\  A. k  e.  ( Base `  R
) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( k ( .r `  R ) ( N `
 y ) ) ( +g  `  R
) ( N `  z ) ) ) ) )
731, 72syl 16 . 2  |-  ( ph  ->  ( N  e.  F  <->  ( N : V --> ( Base `  R )  /\  A. k  e.  ( Base `  R ) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( k ( .r `  R ) ( N `
 y ) ) ( +g  `  R
) ( N `  z ) ) ) ) )
7421, 71, 73mpbir2and 920 1  |-  ( ph  ->  N  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   A.wral 2791    |-> cmpt 4492   -->wf 5571   ` cfv 5575  (class class class)co 6278   Basecbs 14506   +g cplusg 14571   .rcmulr 14572  Scalarcsca 14574   .scvsca 14575   Grpcgrp 15924   invgcminusg 15925   Abelcabl 16670   Ringcrg 17069   LModclmod 17383  LFnlclfn 34505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6683  df-recs 7041  df-rdg 7075  df-er 7310  df-map 7421  df-en 7516  df-dom 7517  df-sdom 7518  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-nn 10540  df-2 10597  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-plusg 14584  df-0g 14713  df-mgm 15743  df-sgrp 15782  df-mnd 15792  df-grp 15928  df-minusg 15929  df-cmn 16671  df-abl 16672  df-mgp 17013  df-ur 17025  df-ring 17071  df-lmod 17385  df-lfl 34506
This theorem is referenced by:  ldualgrplem  34593
  Copyright terms: Public domain W3C validator