Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lflnegcl Structured version   Unicode version

Theorem lflnegcl 32314
Description: Closure of the negative of a functional. (This is specialized for the purpose of proving ldualgrp 32385, and we do not define a general operation here.) (Contributed by NM, 22-Oct-2014.)
Hypotheses
Ref Expression
lflnegcl.v  |-  V  =  ( Base `  W
)
lflnegcl.r  |-  R  =  (Scalar `  W )
lflnegcl.i  |-  I  =  ( invg `  R )
lflnegcl.n  |-  N  =  ( x  e.  V  |->  ( I `  ( G `  x )
) )
lflnegcl.f  |-  F  =  (LFnl `  W )
lflnegcl.w  |-  ( ph  ->  W  e.  LMod )
lflnegcl.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lflnegcl  |-  ( ph  ->  N  e.  F )
Distinct variable groups:    x, G    x, I    x, R    x, V    x, W    ph, x
Allowed substitution hints:    F( x)    N( x)

Proof of Theorem lflnegcl
Dummy variables  y 
k  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lflnegcl.w . . . . . . 7  |-  ( ph  ->  W  e.  LMod )
2 lflnegcl.r . . . . . . . 8  |-  R  =  (Scalar `  W )
32lmodrng 16880 . . . . . . 7  |-  ( W  e.  LMod  ->  R  e. 
Ring )
41, 3syl 16 . . . . . 6  |-  ( ph  ->  R  e.  Ring )
5 rnggrp 16586 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
64, 5syl 16 . . . . 5  |-  ( ph  ->  R  e.  Grp )
76adantr 462 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  R  e.  Grp )
81adantr 462 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  W  e.  LMod )
9 lflnegcl.g . . . . . 6  |-  ( ph  ->  G  e.  F )
109adantr 462 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  G  e.  F )
11 simpr 458 . . . . 5  |-  ( (
ph  /\  x  e.  V )  ->  x  e.  V )
12 eqid 2433 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
13 lflnegcl.v . . . . . 6  |-  V  =  ( Base `  W
)
14 lflnegcl.f . . . . . 6  |-  F  =  (LFnl `  W )
152, 12, 13, 14lflcl 32303 . . . . 5  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  x  e.  V )  ->  ( G `  x )  e.  ( Base `  R
) )
168, 10, 11, 15syl3anc 1211 . . . 4  |-  ( (
ph  /\  x  e.  V )  ->  ( G `  x )  e.  ( Base `  R
) )
17 lflnegcl.i . . . . 5  |-  I  =  ( invg `  R )
1812, 17grpinvcl 15563 . . . 4  |-  ( ( R  e.  Grp  /\  ( G `  x )  e.  ( Base `  R
) )  ->  (
I `  ( G `  x ) )  e.  ( Base `  R
) )
197, 16, 18syl2anc 654 . . 3  |-  ( (
ph  /\  x  e.  V )  ->  (
I `  ( G `  x ) )  e.  ( Base `  R
) )
20 lflnegcl.n . . 3  |-  N  =  ( x  e.  V  |->  ( I `  ( G `  x )
) )
2119, 20fmptd 5855 . 2  |-  ( ph  ->  N : V --> ( Base `  R ) )
22 rngabl 16610 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. 
Abel )
234, 22syl 16 . . . . . . 7  |-  ( ph  ->  R  e.  Abel )
2423adantr 462 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  R  e.  Abel )
254adantr 462 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  R  e.  Ring )
26 simpr1 987 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  k  e.  ( Base `  R
) )
271adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  W  e.  LMod )
289adantr 462 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  G  e.  F )
29 simpr2 988 . . . . . . . 8  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  y  e.  V )
302, 12, 13, 14lflcl 32303 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  V )  ->  ( G `  y )  e.  ( Base `  R
) )
3127, 28, 29, 30syl3anc 1211 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  y )  e.  ( Base `  R
) )
32 eqid 2433 . . . . . . . 8  |-  ( .r
`  R )  =  ( .r `  R
)
3312, 32rngcl 16594 . . . . . . 7  |-  ( ( R  e.  Ring  /\  k  e.  ( Base `  R
)  /\  ( G `  y )  e.  (
Base `  R )
)  ->  ( k
( .r `  R
) ( G `  y ) )  e.  ( Base `  R
) )
3425, 26, 31, 33syl3anc 1211 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( G `
 y ) )  e.  ( Base `  R
) )
35 simpr3 989 . . . . . . 7  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  z  e.  V )
362, 12, 13, 14lflcl 32303 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  z  e.  V )  ->  ( G `  z )  e.  ( Base `  R
) )
3727, 28, 35, 36syl3anc 1211 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  z )  e.  ( Base `  R
) )
38 eqid 2433 . . . . . . 7  |-  ( +g  `  R )  =  ( +g  `  R )
3912, 38, 17ablinvadd 16279 . . . . . 6  |-  ( ( R  e.  Abel  /\  (
k ( .r `  R ) ( G `
 y ) )  e.  ( Base `  R
)  /\  ( G `  z )  e.  (
Base `  R )
)  ->  ( I `  ( ( k ( .r `  R ) ( G `  y
) ) ( +g  `  R ) ( G `
 z ) ) )  =  ( ( I `  ( k ( .r `  R
) ( G `  y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4024, 34, 37, 39syl3anc 1211 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( (
k ( .r `  R ) ( G `
 y ) ) ( +g  `  R
) ( G `  z ) ) )  =  ( ( I `
 ( k ( .r `  R ) ( G `  y
) ) ) ( +g  `  R ) ( I `  ( G `  z )
) ) )
41 eqid 2433 . . . . . . . 8  |-  ( +g  `  W )  =  ( +g  `  W )
42 eqid 2433 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
4313, 41, 2, 42, 12, 38, 32, 14lfli 32300 . . . . . . 7  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
k  e.  ( Base `  R )  /\  y  e.  V  /\  z  e.  V ) )  -> 
( G `  (
( k ( .s
`  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( G `  y ) ) ( +g  `  R ) ( G `  z
) ) )
4427, 28, 26, 29, 35, 43syl113anc 1223 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( G `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( G `  y ) ) ( +g  `  R ) ( G `  z
) ) )
4544fveq2d 5683 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( I `  ( ( k ( .r `  R ) ( G `
 y ) ) ( +g  `  R
) ( G `  z ) ) ) )
4612, 32, 17, 25, 26, 31rngmneg2 16623 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( I `
 ( G `  y ) ) )  =  ( I `  ( k ( .r
`  R ) ( G `  y ) ) ) )
4746oveq1d 6095 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .r
`  R ) ( I `  ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) )  =  ( ( I `  (
k ( .r `  R ) ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4840, 45, 473eqtr4d 2475 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( ( k ( .r
`  R ) ( I `  ( G `
 y ) ) ) ( +g  `  R
) ( I `  ( G `  z ) ) ) )
4913, 2, 42, 12lmodvscl 16889 . . . . . . 7  |-  ( ( W  e.  LMod  /\  k  e.  ( Base `  R
)  /\  y  e.  V )  ->  (
k ( .s `  W ) y )  e.  V )
5027, 26, 29, 49syl3anc 1211 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .s `  W ) y )  e.  V )
5113, 41lmodvacl 16886 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
k ( .s `  W ) y )  e.  V  /\  z  e.  V )  ->  (
( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
5227, 50, 35, 51syl3anc 1211 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V )
53 fveq2 5679 . . . . . . 7  |-  ( x  =  ( ( k ( .s `  W
) y ) ( +g  `  W ) z )  ->  ( G `  x )  =  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )
5453fveq2d 5683 . . . . . 6  |-  ( x  =  ( ( k ( .s `  W
) y ) ( +g  `  W ) z )  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
55 fvex 5689 . . . . . 6  |-  ( I `
 ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) )  e.  _V
5654, 20, 55fvmpt 5762 . . . . 5  |-  ( ( ( k ( .s
`  W ) y ) ( +g  `  W
) z )  e.  V  ->  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( I `
 ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) ) ) )
5752, 56syl 16 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( I `  ( G `  ( ( k ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
58 fveq2 5679 . . . . . . . . 9  |-  ( x  =  y  ->  ( G `  x )  =  ( G `  y ) )
5958fveq2d 5683 . . . . . . . 8  |-  ( x  =  y  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  y )
) )
60 fvex 5689 . . . . . . . 8  |-  ( I `
 ( G `  y ) )  e. 
_V
6159, 20, 60fvmpt 5762 . . . . . . 7  |-  ( y  e.  V  ->  ( N `  y )  =  ( I `  ( G `  y ) ) )
6229, 61syl 16 . . . . . 6  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  y )  =  ( I `  ( G `  y ) ) )
6362oveq2d 6096 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
k ( .r `  R ) ( N `
 y ) )  =  ( k ( .r `  R ) ( I `  ( G `  y )
) ) )
64 fveq2 5679 . . . . . . . 8  |-  ( x  =  z  ->  ( G `  x )  =  ( G `  z ) )
6564fveq2d 5683 . . . . . . 7  |-  ( x  =  z  ->  (
I `  ( G `  x ) )  =  ( I `  ( G `  z )
) )
66 fvex 5689 . . . . . . 7  |-  ( I `
 ( G `  z ) )  e. 
_V
6765, 20, 66fvmpt 5762 . . . . . 6  |-  ( z  e.  V  ->  ( N `  z )  =  ( I `  ( G `  z ) ) )
6835, 67syl 16 . . . . 5  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  z )  =  ( I `  ( G `  z ) ) )
6963, 68oveq12d 6098 . . . 4  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  (
( k ( .r
`  R ) ( N `  y ) ) ( +g  `  R
) ( N `  z ) )  =  ( ( k ( .r `  R ) ( I `  ( G `  y )
) ) ( +g  `  R ) ( I `
 ( G `  z ) ) ) )
7048, 57, 693eqtr4d 2475 . . 3  |-  ( (
ph  /\  ( k  e.  ( Base `  R
)  /\  y  e.  V  /\  z  e.  V
) )  ->  ( N `  ( (
k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( N `  y ) ) ( +g  `  R ) ( N `  z
) ) )
7170ralrimivvva 2799 . 2  |-  ( ph  ->  A. k  e.  (
Base `  R ) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( k ( .r `  R
) ( N `  y ) ) ( +g  `  R ) ( N `  z
) ) )
7213, 41, 2, 42, 12, 38, 32, 14islfl 32299 . . 3  |-  ( W  e.  LMod  ->  ( N  e.  F  <->  ( N : V --> ( Base `  R
)  /\  A. k  e.  ( Base `  R
) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( k ( .r `  R ) ( N `
 y ) ) ( +g  `  R
) ( N `  z ) ) ) ) )
731, 72syl 16 . 2  |-  ( ph  ->  ( N  e.  F  <->  ( N : V --> ( Base `  R )  /\  A. k  e.  ( Base `  R ) A. y  e.  V  A. z  e.  V  ( N `  ( ( k ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( k ( .r `  R ) ( N `
 y ) ) ( +g  `  R
) ( N `  z ) ) ) ) )
7421, 71, 73mpbir2and 906 1  |-  ( ph  ->  N  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   A.wral 2705    e. cmpt 4338   -->wf 5402   ` cfv 5406  (class class class)co 6080   Basecbs 14157   +g cplusg 14221   .rcmulr 14222  Scalarcsca 14224   .scvsca 14225   Grpcgrp 15393   invgcminusg 15394   Abelcabel 16258   Ringcrg 16577   LModclmod 16872  LFnlclfn 32296
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-recs 6818  df-rdg 6852  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-plusg 14234  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-cmn 16259  df-abl 16260  df-mgp 16566  df-rng 16580  df-ur 16582  df-lmod 16874  df-lfl 32297
This theorem is referenced by:  ldualgrplem  32384
  Copyright terms: Public domain W3C validator