Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfladdcl Structured version   Unicode version

Theorem lfladdcl 34269
Description: Closure of addition of two functionals. (Contributed by NM, 19-Oct-2014.)
Hypotheses
Ref Expression
lfladdcl.r  |-  R  =  (Scalar `  W )
lfladdcl.p  |-  .+  =  ( +g  `  R )
lfladdcl.f  |-  F  =  (LFnl `  W )
lfladdcl.w  |-  ( ph  ->  W  e.  LMod )
lfladdcl.g  |-  ( ph  ->  G  e.  F )
lfladdcl.h  |-  ( ph  ->  H  e.  F )
Assertion
Ref Expression
lfladdcl  |-  ( ph  ->  ( G  oF  .+  H )  e.  F )

Proof of Theorem lfladdcl
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lfladdcl.w . . . . 5  |-  ( ph  ->  W  e.  LMod )
21adantr 465 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  W  e.  LMod )
3 simprl 755 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  x  e.  ( Base `  R
) )
4 simprr 756 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  y  e.  ( Base `  R
) )
5 lfladdcl.r . . . . 5  |-  R  =  (Scalar `  W )
6 eqid 2467 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
7 lfladdcl.p . . . . 5  |-  .+  =  ( +g  `  R )
85, 6, 7lmodacl 17394 . . . 4  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
)  ->  ( x  .+  y )  e.  (
Base `  R )
)
92, 3, 4, 8syl3anc 1228 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  R )
) )  ->  (
x  .+  y )  e.  ( Base `  R
) )
10 lfladdcl.g . . . 4  |-  ( ph  ->  G  e.  F )
11 eqid 2467 . . . . 5  |-  ( Base `  W )  =  (
Base `  W )
12 lfladdcl.f . . . . 5  |-  F  =  (LFnl `  W )
135, 6, 11, 12lflf 34261 . . . 4  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  G : ( Base `  W
) --> ( Base `  R
) )
141, 10, 13syl2anc 661 . . 3  |-  ( ph  ->  G : ( Base `  W ) --> ( Base `  R ) )
15 lfladdcl.h . . . 4  |-  ( ph  ->  H  e.  F )
165, 6, 11, 12lflf 34261 . . . 4  |-  ( ( W  e.  LMod  /\  H  e.  F )  ->  H : ( Base `  W
) --> ( Base `  R
) )
171, 15, 16syl2anc 661 . . 3  |-  ( ph  ->  H : ( Base `  W ) --> ( Base `  R ) )
18 fvex 5882 . . . 4  |-  ( Base `  W )  e.  _V
1918a1i 11 . . 3  |-  ( ph  ->  ( Base `  W
)  e.  _V )
20 inidm 3712 . . 3  |-  ( (
Base `  W )  i^i  ( Base `  W
) )  =  (
Base `  W )
219, 14, 17, 19, 19, 20off 6549 . 2  |-  ( ph  ->  ( G  oF  .+  H ) : ( Base `  W
) --> ( Base `  R
) )
221adantr 465 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  W  e.  LMod )
23 simpr1 1002 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  x  e.  ( Base `  R )
)
24 simpr2 1003 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  y  e.  ( Base `  W )
)
25 eqid 2467 . . . . . . . 8  |-  ( .s
`  W )  =  ( .s `  W
)
2611, 5, 25, 6lmodvscl 17400 . . . . . . 7  |-  ( ( W  e.  LMod  /\  x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )
)  ->  ( x
( .s `  W
) y )  e.  ( Base `  W
) )
2722, 23, 24, 26syl3anc 1228 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( x
( .s `  W
) y )  e.  ( Base `  W
) )
28 simpr3 1004 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  z  e.  ( Base `  W )
)
29 eqid 2467 . . . . . . 7  |-  ( +g  `  W )  =  ( +g  `  W )
3011, 29lmodvacl 17397 . . . . . 6  |-  ( ( W  e.  LMod  /\  (
x ( .s `  W ) y )  e.  ( Base `  W
)  /\  z  e.  ( Base `  W )
)  ->  ( (
x ( .s `  W ) y ) ( +g  `  W
) z )  e.  ( Base `  W
) )
3122, 27, 28, 30syl3anc 1228 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( (
x ( .s `  W ) y ) ( +g  `  W
) z )  e.  ( Base `  W
) )
32 ffn 5737 . . . . . . 7  |-  ( G : ( Base `  W
) --> ( Base `  R
)  ->  G  Fn  ( Base `  W )
)
3314, 32syl 16 . . . . . 6  |-  ( ph  ->  G  Fn  ( Base `  W ) )
34 ffn 5737 . . . . . . 7  |-  ( H : ( Base `  W
) --> ( Base `  R
)  ->  H  Fn  ( Base `  W )
)
3517, 34syl 16 . . . . . 6  |-  ( ph  ->  H  Fn  ( Base `  W ) )
36 eqidd 2468 . . . . . 6  |-  ( (
ph  /\  ( (
x ( .s `  W ) y ) ( +g  `  W
) z )  e.  ( Base `  W
) )  ->  ( G `  ( (
x ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( G `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) ) )
37 eqidd 2468 . . . . . 6  |-  ( (
ph  /\  ( (
x ( .s `  W ) y ) ( +g  `  W
) z )  e.  ( Base `  W
) )  ->  ( H `  ( (
x ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( H `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) ) )
3833, 35, 19, 19, 20, 36, 37ofval 6544 . . . . 5  |-  ( (
ph  /\  ( (
x ( .s `  W ) y ) ( +g  `  W
) z )  e.  ( Base `  W
) )  ->  (
( G  oF  .+  H ) `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( G `  ( ( x ( .s `  W ) y ) ( +g  `  W
) z ) ) 
.+  ( H `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) ) ) )
3931, 38syldan 470 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( G  oF  .+  H
) `  ( (
x ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( G `
 ( ( x ( .s `  W
) y ) ( +g  `  W ) z ) )  .+  ( H `  ( ( x ( .s `  W ) y ) ( +g  `  W
) z ) ) ) )
40 eqidd 2468 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( Base `  W )
)  ->  ( G `  y )  =  ( G `  y ) )
41 eqidd 2468 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( Base `  W )
)  ->  ( H `  y )  =  ( H `  y ) )
4233, 35, 19, 19, 20, 40, 41ofval 6544 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( Base `  W )
)  ->  ( ( G  oF  .+  H
) `  y )  =  ( ( G `
 y )  .+  ( H `  y ) ) )
4324, 42syldan 470 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( G  oF  .+  H
) `  y )  =  ( ( G `
 y )  .+  ( H `  y ) ) )
4443oveq2d 6311 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( x
( .r `  R
) ( ( G  oF  .+  H
) `  y )
)  =  ( x ( .r `  R
) ( ( G `
 y )  .+  ( H `  y ) ) ) )
45 eqidd 2468 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( G `  z )  =  ( G `  z ) )
46 eqidd 2468 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( H `  z )  =  ( H `  z ) )
4733, 35, 19, 19, 20, 45, 46ofval 6544 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( Base `  W )
)  ->  ( ( G  oF  .+  H
) `  z )  =  ( ( G `
 z )  .+  ( H `  z ) ) )
4828, 47syldan 470 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( G  oF  .+  H
) `  z )  =  ( ( G `
 z )  .+  ( H `  z ) ) )
4944, 48oveq12d 6313 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( (
x ( .r `  R ) ( ( G  oF  .+  H ) `  y
) )  .+  (
( G  oF  .+  H ) `  z ) )  =  ( ( x ( .r `  R ) ( ( G `  y )  .+  ( H `  y )
) )  .+  (
( G `  z
)  .+  ( H `  z ) ) ) )
5010adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  G  e.  F )
515, 7, 11, 29, 12lfladd 34264 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
( x ( .s
`  W ) y )  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
( G `  (
( x ( .s
`  W ) y ) ( +g  `  W
) z ) )  =  ( ( G `
 ( x ( .s `  W ) y ) )  .+  ( G `  z ) ) )
5222, 50, 27, 28, 51syl112anc 1232 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( G `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( G `  ( x ( .s `  W
) y ) ) 
.+  ( G `  z ) ) )
5315adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  H  e.  F )
545, 7, 11, 29, 12lfladd 34264 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  (
( x ( .s
`  W ) y )  e.  ( Base `  W )  /\  z  e.  ( Base `  W
) ) )  -> 
( H `  (
( x ( .s
`  W ) y ) ( +g  `  W
) z ) )  =  ( ( H `
 ( x ( .s `  W ) y ) )  .+  ( H `  z ) ) )
5522, 53, 27, 28, 54syl112anc 1232 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( H `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) )  =  ( ( H `  ( x ( .s `  W
) y ) ) 
.+  ( H `  z ) ) )
5652, 55oveq12d 6313 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( G `  ( (
x ( .s `  W ) y ) ( +g  `  W
) z ) ) 
.+  ( H `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( ( ( G `  ( x ( .s
`  W ) y ) )  .+  ( G `  z )
)  .+  ( ( H `  ( x
( .s `  W
) y ) ) 
.+  ( H `  z ) ) ) )
575lmodring 17391 . . . . . . . . 9  |-  ( W  e.  LMod  ->  R  e. 
Ring )
5822, 57syl 16 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  R  e.  Ring )
59 ringcmn 17101 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. CMnd
)
6058, 59syl 16 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  R  e. CMnd )
615, 6, 11, 12lflcl 34262 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
x ( .s `  W ) y )  e.  ( Base `  W
) )  ->  ( G `  ( x
( .s `  W
) y ) )  e.  ( Base `  R
) )
6222, 50, 27, 61syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( G `  ( x ( .s
`  W ) y ) )  e.  (
Base `  R )
)
635, 6, 11, 12lflcl 34262 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  z  e.  ( Base `  W
) )  ->  ( G `  z )  e.  ( Base `  R
) )
6422, 50, 28, 63syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( G `  z )  e.  (
Base `  R )
)
655, 6, 11, 12lflcl 34262 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  (
x ( .s `  W ) y )  e.  ( Base `  W
) )  ->  ( H `  ( x
( .s `  W
) y ) )  e.  ( Base `  R
) )
6622, 53, 27, 65syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( H `  ( x ( .s
`  W ) y ) )  e.  (
Base `  R )
)
675, 6, 11, 12lflcl 34262 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  z  e.  ( Base `  W
) )  ->  ( H `  z )  e.  ( Base `  R
) )
6822, 53, 28, 67syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( H `  z )  e.  (
Base `  R )
)
696, 7cmn4 16690 . . . . . . 7  |-  ( ( R  e. CMnd  /\  (
( G `  (
x ( .s `  W ) y ) )  e.  ( Base `  R )  /\  ( G `  z )  e.  ( Base `  R
) )  /\  (
( H `  (
x ( .s `  W ) y ) )  e.  ( Base `  R )  /\  ( H `  z )  e.  ( Base `  R
) ) )  -> 
( ( ( G `
 ( x ( .s `  W ) y ) )  .+  ( G `  z ) )  .+  ( ( H `  ( x ( .s `  W
) y ) ) 
.+  ( H `  z ) ) )  =  ( ( ( G `  ( x ( .s `  W
) y ) ) 
.+  ( H `  ( x ( .s
`  W ) y ) ) )  .+  ( ( G `  z )  .+  ( H `  z )
) ) )
7060, 62, 64, 66, 68, 69syl122anc 1237 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( (
( G `  (
x ( .s `  W ) y ) )  .+  ( G `
 z ) ) 
.+  ( ( H `
 ( x ( .s `  W ) y ) )  .+  ( H `  z ) ) )  =  ( ( ( G `  ( x ( .s
`  W ) y ) )  .+  ( H `  ( x
( .s `  W
) y ) ) )  .+  ( ( G `  z ) 
.+  ( H `  z ) ) ) )
71 eqid 2467 . . . . . . . . . . 11  |-  ( .r
`  R )  =  ( .r `  R
)
725, 6, 71, 11, 25, 12lflmul 34266 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  W
) ) )  -> 
( G `  (
x ( .s `  W ) y ) )  =  ( x ( .r `  R
) ( G `  y ) ) )
7322, 50, 23, 24, 72syl112anc 1232 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( G `  ( x ( .s
`  W ) y ) )  =  ( x ( .r `  R ) ( G `
 y ) ) )
745, 6, 71, 11, 25, 12lflmul 34266 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  (
x  e.  ( Base `  R )  /\  y  e.  ( Base `  W
) ) )  -> 
( H `  (
x ( .s `  W ) y ) )  =  ( x ( .r `  R
) ( H `  y ) ) )
7522, 53, 23, 24, 74syl112anc 1232 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( H `  ( x ( .s
`  W ) y ) )  =  ( x ( .r `  R ) ( H `
 y ) ) )
7673, 75oveq12d 6313 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( G `  ( x
( .s `  W
) y ) ) 
.+  ( H `  ( x ( .s
`  W ) y ) ) )  =  ( ( x ( .r `  R ) ( G `  y
) )  .+  (
x ( .r `  R ) ( H `
 y ) ) ) )
775, 6, 11, 12lflcl 34262 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  G  e.  F  /\  y  e.  ( Base `  W
) )  ->  ( G `  y )  e.  ( Base `  R
) )
7822, 50, 24, 77syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( G `  y )  e.  (
Base `  R )
)
795, 6, 11, 12lflcl 34262 . . . . . . . . . 10  |-  ( ( W  e.  LMod  /\  H  e.  F  /\  y  e.  ( Base `  W
) )  ->  ( H `  y )  e.  ( Base `  R
) )
8022, 53, 24, 79syl3anc 1228 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( H `  y )  e.  (
Base `  R )
)
816, 7, 71ringdi 17089 . . . . . . . . 9  |-  ( ( R  e.  Ring  /\  (
x  e.  ( Base `  R )  /\  ( G `  y )  e.  ( Base `  R
)  /\  ( H `  y )  e.  (
Base `  R )
) )  ->  (
x ( .r `  R ) ( ( G `  y ) 
.+  ( H `  y ) ) )  =  ( ( x ( .r `  R
) ( G `  y ) )  .+  ( x ( .r
`  R ) ( H `  y ) ) ) )
8258, 23, 78, 80, 81syl13anc 1230 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( x
( .r `  R
) ( ( G `
 y )  .+  ( H `  y ) ) )  =  ( ( x ( .r
`  R ) ( G `  y ) )  .+  ( x ( .r `  R
) ( H `  y ) ) ) )
8376, 82eqtr4d 2511 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( G `  ( x
( .s `  W
) y ) ) 
.+  ( H `  ( x ( .s
`  W ) y ) ) )  =  ( x ( .r
`  R ) ( ( G `  y
)  .+  ( H `  y ) ) ) )
8483oveq1d 6310 . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( (
( G `  (
x ( .s `  W ) y ) )  .+  ( H `
 ( x ( .s `  W ) y ) ) ) 
.+  ( ( G `
 z )  .+  ( H `  z ) ) )  =  ( ( x ( .r
`  R ) ( ( G `  y
)  .+  ( H `  y ) ) ) 
.+  ( ( G `
 z )  .+  ( H `  z ) ) ) )
8556, 70, 843eqtrd 2512 . . . . 5  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( G `  ( (
x ( .s `  W ) y ) ( +g  `  W
) z ) ) 
.+  ( H `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) ) )  =  ( ( x ( .r
`  R ) ( ( G `  y
)  .+  ( H `  y ) ) ) 
.+  ( ( G `
 z )  .+  ( H `  z ) ) ) )
8649, 85eqtr4d 2511 . . . 4  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( (
x ( .r `  R ) ( ( G  oF  .+  H ) `  y
) )  .+  (
( G  oF  .+  H ) `  z ) )  =  ( ( G `  ( ( x ( .s `  W ) y ) ( +g  `  W ) z ) )  .+  ( H `
 ( ( x ( .s `  W
) y ) ( +g  `  W ) z ) ) ) )
8739, 86eqtr4d 2511 . . 3  |-  ( (
ph  /\  ( x  e.  ( Base `  R
)  /\  y  e.  ( Base `  W )  /\  z  e.  ( Base `  W ) ) )  ->  ( ( G  oF  .+  H
) `  ( (
x ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( x ( .r `  R
) ( ( G  oF  .+  H
) `  y )
)  .+  ( ( G  oF  .+  H
) `  z )
) )
8887ralrimivvva 2889 . 2  |-  ( ph  ->  A. x  e.  (
Base `  R ) A. y  e.  ( Base `  W ) A. z  e.  ( Base `  W ) ( ( G  oF  .+  H ) `  (
( x ( .s
`  W ) y ) ( +g  `  W
) z ) )  =  ( ( x ( .r `  R
) ( ( G  oF  .+  H
) `  y )
)  .+  ( ( G  oF  .+  H
) `  z )
) )
8911, 29, 5, 25, 6, 7, 71, 12islfl 34258 . . 3  |-  ( W  e.  LMod  ->  ( ( G  oF  .+  H )  e.  F  <->  ( ( G  oF  .+  H ) : ( Base `  W
) --> ( Base `  R
)  /\  A. x  e.  ( Base `  R
) A. y  e.  ( Base `  W
) A. z  e.  ( Base `  W
) ( ( G  oF  .+  H
) `  ( (
x ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( x ( .r `  R
) ( ( G  oF  .+  H
) `  y )
)  .+  ( ( G  oF  .+  H
) `  z )
) ) ) )
901, 89syl 16 . 2  |-  ( ph  ->  ( ( G  oF  .+  H )  e.  F  <->  ( ( G  oF  .+  H
) : ( Base `  W ) --> ( Base `  R )  /\  A. x  e.  ( Base `  R ) A. y  e.  ( Base `  W
) A. z  e.  ( Base `  W
) ( ( G  oF  .+  H
) `  ( (
x ( .s `  W ) y ) ( +g  `  W
) z ) )  =  ( ( x ( .r `  R
) ( ( G  oF  .+  H
) `  y )
)  .+  ( ( G  oF  .+  H
) `  z )
) ) ) )
9121, 88, 90mpbir2and 920 1  |-  ( ph  ->  ( G  oF  .+  H )  e.  F )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6295    oFcof 6533   Basecbs 14507   +g cplusg 14572   .rcmulr 14573  Scalarcsca 14575   .scvsca 14576  CMndccmn 16671   Ringcrg 17070   LModclmod 17383  LFnlclfn 34255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-plusg 14585  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-minusg 15930  df-sbg 15931  df-cmn 16673  df-abl 16674  df-mgp 17014  df-ur 17026  df-ring 17072  df-lmod 17385  df-lfl 34256
This theorem is referenced by:  ldualvaddcl  34328
  Copyright terms: Public domain W3C validator