Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Structured version   Unicode version

Theorem lfl1dim 35243
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v  |-  V  =  ( Base `  W
)
lfl1dim.d  |-  D  =  (Scalar `  W )
lfl1dim.f  |-  F  =  (LFnl `  W )
lfl1dim.l  |-  L  =  (LKer `  W )
lfl1dim.k  |-  K  =  ( Base `  D
)
lfl1dim.t  |-  .x.  =  ( .r `  D )
lfl1dim.w  |-  ( ph  ->  W  e.  LVec )
lfl1dim.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lfl1dim  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) } )
Distinct variable groups:    D, k    k, F    k, G    k, K    k, L    k, V    k, W    g, k, ph    .x. , k
Allowed substitution hints:    D( g)    .x. ( g)    F( g)    G( g)    K( g)    L( g)    V( g)    W( g)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 2813 . 2  |-  { g  e.  F  |  ( L `  G ) 
C_  ( L `  g ) }  =  { g  |  ( g  e.  F  /\  ( L `  G ) 
C_  ( L `  g ) ) }
2 lfl1dim.w . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  LVec )
3 lveclmod 17947 . . . . . . . . . . . 12  |-  ( W  e.  LVec  ->  W  e. 
LMod )
42, 3syl 16 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LMod )
5 lfl1dim.d . . . . . . . . . . . 12  |-  D  =  (Scalar `  W )
6 lfl1dim.k . . . . . . . . . . . 12  |-  K  =  ( Base `  D
)
7 eqid 2454 . . . . . . . . . . . 12  |-  ( 0g
`  D )  =  ( 0g `  D
)
85, 6, 7lmod0cl 17733 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  ( 0g
`  D )  e.  K )
94, 8syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  D
)  e.  K )
109ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( 0g `  D )  e.  K
)
11 simpr 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  g  =  ( V  X.  { ( 0g `  D ) } ) )
12 lfl1dim.v . . . . . . . . . . 11  |-  V  =  ( Base `  W
)
13 lfl1dim.f . . . . . . . . . . 11  |-  F  =  (LFnl `  W )
14 lfl1dim.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  D )
154ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  W  e.  LMod )
16 lfl1dim.g . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  F )
1716ad2antrr 723 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  G  e.  F )
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 35204 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) )  =  ( V  X.  { ( 0g `  D ) } ) )
1911, 18eqtr4d 2498 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  g  =  ( G  oF  .x.  ( V  X.  {
( 0g `  D
) } ) ) )
20 sneq 4026 . . . . . . . . . . . . 13  |-  ( k  =  ( 0g `  D )  ->  { k }  =  { ( 0g `  D ) } )
2120xpeq2d 5012 . . . . . . . . . . . 12  |-  ( k  =  ( 0g `  D )  ->  ( V  X.  { k } )  =  ( V  X.  { ( 0g
`  D ) } ) )
2221oveq2d 6286 . . . . . . . . . . 11  |-  ( k  =  ( 0g `  D )  ->  ( G  oF  .x.  ( V  X.  { k } ) )  =  ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
2322eqeq2d 2468 . . . . . . . . . 10  |-  ( k  =  ( 0g `  D )  ->  (
g  =  ( G  oF  .x.  ( V  X.  { k } ) )  <->  g  =  ( G  oF  .x.  ( V  X.  {
( 0g `  D
) } ) ) ) )
2423rspcev 3207 . . . . . . . . 9  |-  ( ( ( 0g `  D
)  e.  K  /\  g  =  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) ) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) )
2510, 19, 24syl2anc 659 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) )
2625a1d 25 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
279ad3antrrr 727 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( 0g `  D )  e.  K )
28 lfl1dim.l . . . . . . . . . . . . 13  |-  L  =  (LKer `  W )
294ad3antrrr 727 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  W  e.  LMod )
30 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  e.  F )
3112, 13, 28, 29, 30lkrssv 35218 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( L `  g )  C_  V )
324adantr 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  F )  ->  W  e.  LMod )
3316adantr 463 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  F )  ->  G  e.  F )
345, 7, 12, 13, 28lkr0f 35216 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
3532, 33, 34syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
3635biimpar 483 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( L `  G )  =  V )
3736sseq1d 3516 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  V  C_  ( L `
 g ) ) )
3837biimpa 482 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  V  C_  ( L `  g
) )
3931, 38eqssd 3506 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( L `  g )  =  V )
405, 7, 12, 13, 28lkr0f 35216 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  g  e.  F )  ->  (
( L `  g
)  =  V  <->  g  =  ( V  X.  { ( 0g `  D ) } ) ) )
4129, 30, 40syl2anc 659 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  (
( L `  g
)  =  V  <->  g  =  ( V  X.  { ( 0g `  D ) } ) ) )
4239, 41mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  =  ( V  X.  { ( 0g `  D ) } ) )
4316ad3antrrr 727 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  G  e.  F )
4412, 5, 13, 6, 14, 7, 29, 43lfl0sc 35204 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) )  =  ( V  X.  { ( 0g `  D ) } ) )
4542, 44eqtr4d 2498 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  =  ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
4627, 45, 24syl2anc 659 . . . . . . . 8  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) )
4746ex 432 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
48 eqid 2454 . . . . . . . . 9  |-  (LSHyp `  W )  =  (LSHyp `  W )
492ad2antrr 723 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  W  e.  LVec )
5016ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  G  e.  F )
51 simprr 755 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  G  =/=  ( V  X.  { ( 0g `  D ) } ) )
5212, 5, 7, 48, 13, 28lkrshp 35227 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( L `  G )  e.  (LSHyp `  W ) )
5349, 50, 51, 52syl3anc 1226 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( L `  G )  e.  (LSHyp `  W ) )
54 simplr 753 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  g  e.  F )
55 simprl 754 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  g  =/=  ( V  X.  { ( 0g `  D ) } ) )
5612, 5, 7, 48, 13, 28lkrshp 35227 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  g  e.  F  /\  g  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( L `  g )  e.  (LSHyp `  W ) )
5749, 54, 55, 56syl3anc 1226 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( L `  g )  e.  (LSHyp `  W ) )
5848, 49, 53, 57lshpcmp 35110 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  ( L `  G )  =  ( L `  g ) ) )
592ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  W  e.  LVec )
6016ad3antrrr 727 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  G  e.  F )
61 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  g  e.  F )
62 simpr 459 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  ( L `  G )  =  ( L `  g ) )
635, 6, 14, 12, 13, 28eqlkr2 35222 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  g  e.  F )  /\  ( L `  G
)  =  ( L `
 g ) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) )
6459, 60, 61, 62, 63syl121anc 1231 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) )
6564ex 432 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  =  ( L `  g )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
6658, 65sylbid 215 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
6726, 47, 66pm2.61da2ne 2773 . . . . . 6  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  C_  ( L `  g )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
682ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  W  e.  LVec )
6916ad2antrr 723 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  G  e.  F )
70 simpr 459 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  k  e.  K )
7112, 5, 6, 14, 13, 28, 68, 69, 70lkrscss 35220 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  ( L `  G )  C_  ( L `  ( G  oF  .x.  ( V  X.  { k } ) ) ) )
7271ex 432 . . . . . . . 8  |-  ( (
ph  /\  g  e.  F )  ->  (
k  e.  K  -> 
( L `  G
)  C_  ( L `  ( G  oF  .x.  ( V  X.  { k } ) ) ) ) )
73 fveq2 5848 . . . . . . . . . 10  |-  ( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  ( L `  g )  =  ( L `  ( G  oF  .x.  ( V  X.  { k } ) ) ) )
7473sseq2d 3517 . . . . . . . . 9  |-  ( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  ( L `  G )  C_  ( L `  ( G  oF  .x.  ( V  X.  { k } ) ) ) ) )
7574biimprcd 225 . . . . . . . 8  |-  ( ( L `  G ) 
C_  ( L `  ( G  oF  .x.  ( V  X.  {
k } ) ) )  ->  ( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  ( L `  G )  C_  ( L `  g )
) )
7672, 75syl6 33 . . . . . . 7  |-  ( (
ph  /\  g  e.  F )  ->  (
k  e.  K  -> 
( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  -> 
( L `  G
)  C_  ( L `  g ) ) ) )
7776rexlimdv 2944 . . . . . 6  |-  ( (
ph  /\  g  e.  F )  ->  ( E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  ( L `  G )  C_  ( L `  g
) ) )
7867, 77impbid 191 . . . . 5  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  C_  ( L `  g )  <->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
7978pm5.32da 639 . . . 4  |-  ( ph  ->  ( ( g  e.  F  /\  ( L `
 G )  C_  ( L `  g ) )  <->  ( g  e.  F  /\  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) ) )
804adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  W  e.  LMod )
8116adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  G  e.  F )
82 simpr 459 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  k  e.  K )
8312, 5, 6, 14, 13, 80, 81, 82lflvscl 35199 . . . . . . . 8  |-  ( (
ph  /\  k  e.  K )  ->  ( G  oF  .x.  ( V  X.  { k } ) )  e.  F
)
84 eleq1a 2537 . . . . . . . 8  |-  ( ( G  oF  .x.  ( V  X.  { k } ) )  e.  F  ->  ( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  g  e.  F ) )
8583, 84syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  K )  ->  (
g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  g  e.  F ) )
8685pm4.71rd 633 . . . . . 6  |-  ( (
ph  /\  k  e.  K )  ->  (
g  =  ( G  oF  .x.  ( V  X.  { k } ) )  <->  ( g  e.  F  /\  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) ) ) )
8786rexbidva 2962 . . . . 5  |-  ( ph  ->  ( E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) )  <->  E. k  e.  K  ( g  e.  F  /\  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) ) ) )
88 r19.42v 3009 . . . . 5  |-  ( E. k  e.  K  ( g  e.  F  /\  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) )  <->  ( g  e.  F  /\  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
8987, 88syl6rbb 262 . . . 4  |-  ( ph  ->  ( ( g  e.  F  /\  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) )  <->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) ) )
9079, 89bitrd 253 . . 3  |-  ( ph  ->  ( ( g  e.  F  /\  ( L `
 G )  C_  ( L `  g ) )  <->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) ) )
9190abbidv 2590 . 2  |-  ( ph  ->  { g  |  ( g  e.  F  /\  ( L `  G ) 
C_  ( L `  g ) ) }  =  { g  |  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) } )
921, 91syl5eq 2507 1  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823   {cab 2439    =/= wne 2649   E.wrex 2805   {crab 2808    C_ wss 3461   {csn 4016    X. cxp 4986   ` cfv 5570  (class class class)co 6270    oFcof 6511   Basecbs 14716   .rcmulr 14785  Scalarcsca 14787   0gc0g 14929   LModclmod 17707   LVecclvec 17943  LSHypclsh 35097  LFnlclfn 35179  LKerclk 35207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-tpos 6947  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-3 10591  df-ndx 14719  df-slot 14720  df-base 14721  df-sets 14722  df-ress 14723  df-plusg 14797  df-mulr 14798  df-0g 14931  df-mgm 16071  df-sgrp 16110  df-mnd 16120  df-submnd 16166  df-grp 16256  df-minusg 16257  df-sbg 16258  df-subg 16397  df-cntz 16554  df-lsm 16855  df-cmn 16999  df-abl 17000  df-mgp 17337  df-ur 17349  df-ring 17395  df-oppr 17467  df-dvdsr 17485  df-unit 17486  df-invr 17516  df-drng 17593  df-lmod 17709  df-lss 17774  df-lsp 17813  df-lvec 17944  df-lshyp 35099  df-lfl 35180  df-lkr 35208
This theorem is referenced by:  ldual1dim  35288
  Copyright terms: Public domain W3C validator