Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfl1dim Structured version   Unicode version

Theorem lfl1dim 34274
Description: Equivalent expressions for a 1-dim subspace (ray) of functionals. (Contributed by NM, 24-Oct-2014.)
Hypotheses
Ref Expression
lfl1dim.v  |-  V  =  ( Base `  W
)
lfl1dim.d  |-  D  =  (Scalar `  W )
lfl1dim.f  |-  F  =  (LFnl `  W )
lfl1dim.l  |-  L  =  (LKer `  W )
lfl1dim.k  |-  K  =  ( Base `  D
)
lfl1dim.t  |-  .x.  =  ( .r `  D )
lfl1dim.w  |-  ( ph  ->  W  e.  LVec )
lfl1dim.g  |-  ( ph  ->  G  e.  F )
Assertion
Ref Expression
lfl1dim  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) } )
Distinct variable groups:    D, k    k, F    k, G    k, K    k, L    k, V    k, W    g, k, ph    .x. , k
Allowed substitution hints:    D( g)    .x. ( g)    F( g)    G( g)    K( g)    L( g)    V( g)    W( g)

Proof of Theorem lfl1dim
StepHypRef Expression
1 df-rab 2826 . 2  |-  { g  e.  F  |  ( L `  G ) 
C_  ( L `  g ) }  =  { g  |  ( g  e.  F  /\  ( L `  G ) 
C_  ( L `  g ) ) }
2 lfl1dim.w . . . . . . . . . . . 12  |-  ( ph  ->  W  e.  LVec )
3 lveclmod 17623 . . . . . . . . . . . 12  |-  ( W  e.  LVec  ->  W  e. 
LMod )
42, 3syl 16 . . . . . . . . . . 11  |-  ( ph  ->  W  e.  LMod )
5 lfl1dim.d . . . . . . . . . . . 12  |-  D  =  (Scalar `  W )
6 lfl1dim.k . . . . . . . . . . . 12  |-  K  =  ( Base `  D
)
7 eqid 2467 . . . . . . . . . . . 12  |-  ( 0g
`  D )  =  ( 0g `  D
)
85, 6, 7lmod0cl 17409 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  ( 0g
`  D )  e.  K )
94, 8syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( 0g `  D
)  e.  K )
109ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( 0g `  D )  e.  K
)
11 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  g  =  ( V  X.  { ( 0g `  D ) } ) )
12 lfl1dim.v . . . . . . . . . . 11  |-  V  =  ( Base `  W
)
13 lfl1dim.f . . . . . . . . . . 11  |-  F  =  (LFnl `  W )
14 lfl1dim.t . . . . . . . . . . 11  |-  .x.  =  ( .r `  D )
154ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  W  e.  LMod )
16 lfl1dim.g . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  F )
1716ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  G  e.  F )
1812, 5, 13, 6, 14, 7, 15, 17lfl0sc 34235 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) )  =  ( V  X.  { ( 0g `  D ) } ) )
1911, 18eqtr4d 2511 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  g  =  ( G  oF  .x.  ( V  X.  {
( 0g `  D
) } ) ) )
20 sneq 4043 . . . . . . . . . . . . 13  |-  ( k  =  ( 0g `  D )  ->  { k }  =  { ( 0g `  D ) } )
2120xpeq2d 5029 . . . . . . . . . . . 12  |-  ( k  =  ( 0g `  D )  ->  ( V  X.  { k } )  =  ( V  X.  { ( 0g
`  D ) } ) )
2221oveq2d 6311 . . . . . . . . . . 11  |-  ( k  =  ( 0g `  D )  ->  ( G  oF  .x.  ( V  X.  { k } ) )  =  ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
2322eqeq2d 2481 . . . . . . . . . 10  |-  ( k  =  ( 0g `  D )  ->  (
g  =  ( G  oF  .x.  ( V  X.  { k } ) )  <->  g  =  ( G  oF  .x.  ( V  X.  {
( 0g `  D
) } ) ) ) )
2423rspcev 3219 . . . . . . . . 9  |-  ( ( ( 0g `  D
)  e.  K  /\  g  =  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) ) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) )
2510, 19, 24syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) )
2625a1d 25 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  g  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
279ad3antrrr 729 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( 0g `  D )  e.  K )
28 lfl1dim.l . . . . . . . . . . . . 13  |-  L  =  (LKer `  W )
294ad3antrrr 729 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  W  e.  LMod )
30 simpllr 758 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  e.  F )
3112, 13, 28, 29, 30lkrssv 34249 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( L `  g )  C_  V )
324adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  F )  ->  W  e.  LMod )
3316adantr 465 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  g  e.  F )  ->  G  e.  F )
345, 7, 12, 13, 28lkr0f 34247 . . . . . . . . . . . . . . . 16  |-  ( ( W  e.  LMod  /\  G  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
3532, 33, 34syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  =  V  <->  G  =  ( V  X.  { ( 0g `  D ) } ) ) )
3635biimpar 485 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( L `  G )  =  V )
3736sseq1d 3536 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  V  C_  ( L `
 g ) ) )
3837biimpa 484 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  V  C_  ( L `  g
) )
3931, 38eqssd 3526 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( L `  g )  =  V )
405, 7, 12, 13, 28lkr0f 34247 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  g  e.  F )  ->  (
( L `  g
)  =  V  <->  g  =  ( V  X.  { ( 0g `  D ) } ) ) )
4129, 30, 40syl2anc 661 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  (
( L `  g
)  =  V  <->  g  =  ( V  X.  { ( 0g `  D ) } ) ) )
4239, 41mpbid 210 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  =  ( V  X.  { ( 0g `  D ) } ) )
4316ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  G  e.  F )
4412, 5, 13, 6, 14, 7, 29, 43lfl0sc 34235 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  ( G  oF  .x.  ( V  X.  { ( 0g
`  D ) } ) )  =  ( V  X.  { ( 0g `  D ) } ) )
4542, 44eqtr4d 2511 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  g  =  ( G  oF  .x.  ( V  X.  { ( 0g `  D ) } ) ) )
4627, 45, 24syl2anc 661 . . . . . . . 8  |-  ( ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g
`  D ) } ) )  /\  ( L `  G )  C_  ( L `  g
) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) )
4746ex 434 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  G  =  ( V  X.  { ( 0g `  D ) } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
48 eqid 2467 . . . . . . . . 9  |-  (LSHyp `  W )  =  (LSHyp `  W )
492ad2antrr 725 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  W  e.  LVec )
5016ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  G  e.  F )
51 simprr 756 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  G  =/=  ( V  X.  { ( 0g `  D ) } ) )
5212, 5, 7, 48, 13, 28lkrshp 34258 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  G  e.  F  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( L `  G )  e.  (LSHyp `  W ) )
5349, 50, 51, 52syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( L `  G )  e.  (LSHyp `  W ) )
54 simplr 754 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  g  e.  F )
55 simprl 755 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  g  =/=  ( V  X.  { ( 0g `  D ) } ) )
5612, 5, 7, 48, 13, 28lkrshp 34258 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  g  e.  F  /\  g  =/=  ( V  X.  {
( 0g `  D
) } ) )  ->  ( L `  g )  e.  (LSHyp `  W ) )
5749, 54, 55, 56syl3anc 1228 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( L `  g )  e.  (LSHyp `  W ) )
5848, 49, 53, 57lshpcmp 34141 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  ( L `  G )  =  ( L `  g ) ) )
592ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  W  e.  LVec )
6016ad3antrrr 729 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  G  e.  F )
61 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  g  e.  F )
62 simpr 461 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  ( L `  G )  =  ( L `  g ) )
635, 6, 14, 12, 13, 28eqlkr2 34253 . . . . . . . . . 10  |-  ( ( W  e.  LVec  /\  ( G  e.  F  /\  g  e.  F )  /\  ( L `  G
)  =  ( L `
 g ) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) )
6459, 60, 61, 62, 63syl121anc 1233 . . . . . . . . 9  |-  ( ( ( ( ph  /\  g  e.  F )  /\  ( g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  /\  ( L `
 G )  =  ( L `  g
) )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) )
6564ex 434 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  =  ( L `  g )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
6658, 65sylbid 215 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  F )  /\  (
g  =/=  ( V  X.  { ( 0g
`  D ) } )  /\  G  =/=  ( V  X.  {
( 0g `  D
) } ) ) )  ->  ( ( L `  G )  C_  ( L `  g
)  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
6726, 47, 66pm2.61da2ne 2786 . . . . . 6  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  C_  ( L `  g )  ->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
682ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  W  e.  LVec )
6916ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  G  e.  F )
70 simpr 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  k  e.  K )
7112, 5, 6, 14, 13, 28, 68, 69, 70lkrscss 34251 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  F )  /\  k  e.  K )  ->  ( L `  G )  C_  ( L `  ( G  oF  .x.  ( V  X.  { k } ) ) ) )
7271ex 434 . . . . . . . 8  |-  ( (
ph  /\  g  e.  F )  ->  (
k  e.  K  -> 
( L `  G
)  C_  ( L `  ( G  oF  .x.  ( V  X.  { k } ) ) ) ) )
73 fveq2 5872 . . . . . . . . . 10  |-  ( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  ( L `  g )  =  ( L `  ( G  oF  .x.  ( V  X.  { k } ) ) ) )
7473sseq2d 3537 . . . . . . . . 9  |-  ( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  ( ( L `  G )  C_  ( L `  g
)  <->  ( L `  G )  C_  ( L `  ( G  oF  .x.  ( V  X.  { k } ) ) ) ) )
7574biimprcd 225 . . . . . . . 8  |-  ( ( L `  G ) 
C_  ( L `  ( G  oF  .x.  ( V  X.  {
k } ) ) )  ->  ( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  ( L `  G )  C_  ( L `  g )
) )
7672, 75syl6 33 . . . . . . 7  |-  ( (
ph  /\  g  e.  F )  ->  (
k  e.  K  -> 
( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  -> 
( L `  G
)  C_  ( L `  g ) ) ) )
7776rexlimdv 2957 . . . . . 6  |-  ( (
ph  /\  g  e.  F )  ->  ( E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  ( L `  G )  C_  ( L `  g
) ) )
7867, 77impbid 191 . . . . 5  |-  ( (
ph  /\  g  e.  F )  ->  (
( L `  G
)  C_  ( L `  g )  <->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
7978pm5.32da 641 . . . 4  |-  ( ph  ->  ( ( g  e.  F  /\  ( L `
 G )  C_  ( L `  g ) )  <->  ( g  e.  F  /\  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) ) )
804adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  W  e.  LMod )
8116adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  G  e.  F )
82 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  K )  ->  k  e.  K )
8312, 5, 6, 14, 13, 80, 81, 82lflvscl 34230 . . . . . . . 8  |-  ( (
ph  /\  k  e.  K )  ->  ( G  oF  .x.  ( V  X.  { k } ) )  e.  F
)
84 eleq1a 2550 . . . . . . . 8  |-  ( ( G  oF  .x.  ( V  X.  { k } ) )  e.  F  ->  ( g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  g  e.  F ) )
8583, 84syl 16 . . . . . . 7  |-  ( (
ph  /\  k  e.  K )  ->  (
g  =  ( G  oF  .x.  ( V  X.  { k } ) )  ->  g  e.  F ) )
8685pm4.71rd 635 . . . . . 6  |-  ( (
ph  /\  k  e.  K )  ->  (
g  =  ( G  oF  .x.  ( V  X.  { k } ) )  <->  ( g  e.  F  /\  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) ) ) )
8786rexbidva 2975 . . . . 5  |-  ( ph  ->  ( E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) )  <->  E. k  e.  K  ( g  e.  F  /\  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) ) ) )
88 r19.42v 3021 . . . . 5  |-  ( E. k  e.  K  ( g  e.  F  /\  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) )  <->  ( g  e.  F  /\  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) ) )
8987, 88syl6rbb 262 . . . 4  |-  ( ph  ->  ( ( g  e.  F  /\  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  {
k } ) ) )  <->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) ) )
9079, 89bitrd 253 . . 3  |-  ( ph  ->  ( ( g  e.  F  /\  ( L `
 G )  C_  ( L `  g ) )  <->  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) ) )
9190abbidv 2603 . 2  |-  ( ph  ->  { g  |  ( g  e.  F  /\  ( L `  G ) 
C_  ( L `  g ) ) }  =  { g  |  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) } )
921, 91syl5eq 2520 1  |-  ( ph  ->  { g  e.  F  |  ( L `  G )  C_  ( L `  g ) }  =  { g  |  E. k  e.  K  g  =  ( G  oF  .x.  ( V  X.  { k } ) ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   {cab 2452    =/= wne 2662   E.wrex 2818   {crab 2821    C_ wss 3481   {csn 4033    X. cxp 5003   ` cfv 5594  (class class class)co 6295    oFcof 6533   Basecbs 14507   .rcmulr 14573  Scalarcsca 14575   0gc0g 14712   LModclmod 17383   LVecclvec 17619  LSHypclsh 34128  LFnlclfn 34210  LKerclk 34238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-tpos 6967  df-recs 7054  df-rdg 7088  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-grp 15929  df-minusg 15930  df-sbg 15931  df-subg 16070  df-cntz 16227  df-lsm 16529  df-cmn 16673  df-abl 16674  df-mgp 17014  df-ur 17026  df-ring 17072  df-oppr 17144  df-dvdsr 17162  df-unit 17163  df-invr 17193  df-drng 17269  df-lmod 17385  df-lss 17450  df-lsp 17489  df-lvec 17620  df-lshyp 34130  df-lfl 34211  df-lkr 34239
This theorem is referenced by:  ldual1dim  34319
  Copyright terms: Public domain W3C validator