MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lfinpfin Structured version   Unicode version

Theorem lfinpfin 20476
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
lfinpfin  |-  ( A  e.  ( LocFin `  J
)  ->  A  e.  PtFin
)

Proof of Theorem lfinpfin
Dummy variables  n  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2423 . . . . . . . 8  |-  U. J  =  U. J
2 eqid 2423 . . . . . . . 8  |-  U. A  =  U. A
31, 2locfinbas 20474 . . . . . . 7  |-  ( A  e.  ( LocFin `  J
)  ->  U. J  = 
U. A )
43eleq2d 2486 . . . . . 6  |-  ( A  e.  ( LocFin `  J
)  ->  ( x  e.  U. J  <->  x  e.  U. A ) )
54biimpar 487 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  x  e.  U. J )
61locfinnei 20475 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. J )  ->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
75, 6syldan 472 . . . 4  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
8 inelcm 3787 . . . . . . . . . 10  |-  ( ( x  e.  s  /\  x  e.  n )  ->  ( s  i^i  n
)  =/=  (/) )
98expcom 436 . . . . . . . . 9  |-  ( x  e.  n  ->  (
x  e.  s  -> 
( s  i^i  n
)  =/=  (/) ) )
109ad2antlr 731 . . . . . . . 8  |-  ( ( ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A
)  /\  x  e.  n )  /\  s  e.  A )  ->  (
x  e.  s  -> 
( s  i^i  n
)  =/=  (/) ) )
1110ss2rabdv 3480 . . . . . . 7  |-  ( ( ( A  e.  (
LocFin `  J )  /\  x  e.  U. A )  /\  x  e.  n
)  ->  { s  e.  A  |  x  e.  s }  C_  { s  e.  A  |  ( s  i^i  n )  =/=  (/) } )
12 ssfi 7740 . . . . . . . 8  |-  ( ( { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin  /\  { s  e.  A  |  x  e.  s }  C_  { s  e.  A  |  ( s  i^i  n )  =/=  (/) } )  ->  { s  e.  A  |  x  e.  s }  e.  Fin )
1312expcom 436 . . . . . . 7  |-  ( { s  e.  A  |  x  e.  s }  C_ 
{ s  e.  A  |  ( s  i^i  n )  =/=  (/) }  ->  ( { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1411, 13syl 17 . . . . . 6  |-  ( ( ( A  e.  (
LocFin `  J )  /\  x  e.  U. A )  /\  x  e.  n
)  ->  ( {
s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1514expimpd 606 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  -> 
( ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1615rexlimdvw 2854 . . . 4  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  -> 
( E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
177, 16mpd 15 . . 3  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  { s  e.  A  |  x  e.  s }  e.  Fin )
1817ralrimiva 2774 . 2  |-  ( A  e.  ( LocFin `  J
)  ->  A. x  e.  U. A { s  e.  A  |  x  e.  s }  e.  Fin )
192isptfin 20468 . 2  |-  ( A  e.  ( LocFin `  J
)  ->  ( A  e.  PtFin 
<-> 
A. x  e.  U. A { s  e.  A  |  x  e.  s }  e.  Fin )
)
2018, 19mpbird 235 1  |-  ( A  e.  ( LocFin `  J
)  ->  A  e.  PtFin
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    e. wcel 1872    =/= wne 2594   A.wral 2709   E.wrex 2710   {crab 2713    i^i cin 3373    C_ wss 3374   (/)c0 3699   U.cuni 4157   ` cfv 5539   Fincfn 7519   PtFincptfin 20455   LocFinclocfin 20456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2058  ax-ext 2403  ax-sep 4484  ax-nul 4493  ax-pow 4540  ax-pr 4598  ax-un 6536
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2275  df-mo 2276  df-clab 2410  df-cleq 2416  df-clel 2419  df-nfc 2553  df-ne 2596  df-ral 2714  df-rex 2715  df-rab 2718  df-v 3019  df-sbc 3238  df-dif 3377  df-un 3379  df-in 3381  df-ss 3388  df-pss 3390  df-nul 3700  df-if 3850  df-pw 3921  df-sn 3937  df-pr 3939  df-tp 3941  df-op 3943  df-uni 4158  df-br 4362  df-opab 4421  df-mpt 4422  df-tr 4457  df-eprel 4702  df-id 4706  df-po 4712  df-so 4713  df-fr 4750  df-we 4752  df-xp 4797  df-rel 4798  df-cnv 4799  df-co 4800  df-dm 4801  df-rn 4802  df-res 4803  df-ima 4804  df-ord 5383  df-on 5384  df-lim 5385  df-suc 5386  df-iota 5503  df-fun 5541  df-fn 5542  df-f 5543  df-f1 5544  df-fo 5545  df-f1o 5546  df-fv 5547  df-om 6646  df-er 7313  df-en 7520  df-fin 7523  df-top 19858  df-ptfin 20458  df-locfin 20459
This theorem is referenced by:  locfindis  20482
  Copyright terms: Public domain W3C validator