Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lfinpfin Structured version   Unicode version

Theorem lfinpfin 29626
Description: A locally finite cover is point-finite. (Contributed by Jeff Hankins, 21-Jan-2010.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Assertion
Ref Expression
lfinpfin  |-  ( A  e.  ( LocFin `  J
)  ->  A  e.  PtFin
)

Proof of Theorem lfinpfin
Dummy variables  n  s  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2460 . . . . . . . 8  |-  U. J  =  U. J
2 eqid 2460 . . . . . . . 8  |-  U. A  =  U. A
31, 2locfinbas 29624 . . . . . . 7  |-  ( A  e.  ( LocFin `  J
)  ->  U. J  = 
U. A )
43eleq2d 2530 . . . . . 6  |-  ( A  e.  ( LocFin `  J
)  ->  ( x  e.  U. J  <->  x  e.  U. A ) )
54biimpar 485 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  x  e.  U. J )
61locfinnei 29625 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. J )  ->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
75, 6syldan 470 . . . 4  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
8 inelcm 3874 . . . . . . . . . 10  |-  ( ( x  e.  s  /\  x  e.  n )  ->  ( s  i^i  n
)  =/=  (/) )
98expcom 435 . . . . . . . . 9  |-  ( x  e.  n  ->  (
x  e.  s  -> 
( s  i^i  n
)  =/=  (/) ) )
109ad2antlr 726 . . . . . . . 8  |-  ( ( ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A
)  /\  x  e.  n )  /\  s  e.  A )  ->  (
x  e.  s  -> 
( s  i^i  n
)  =/=  (/) ) )
1110ss2rabdv 3574 . . . . . . 7  |-  ( ( ( A  e.  (
LocFin `  J )  /\  x  e.  U. A )  /\  x  e.  n
)  ->  { s  e.  A  |  x  e.  s }  C_  { s  e.  A  |  ( s  i^i  n )  =/=  (/) } )
12 ssfi 7730 . . . . . . . 8  |-  ( ( { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin  /\  { s  e.  A  |  x  e.  s }  C_  { s  e.  A  |  ( s  i^i  n )  =/=  (/) } )  ->  { s  e.  A  |  x  e.  s }  e.  Fin )
1312expcom 435 . . . . . . 7  |-  ( { s  e.  A  |  x  e.  s }  C_ 
{ s  e.  A  |  ( s  i^i  n )  =/=  (/) }  ->  ( { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1411, 13syl 16 . . . . . 6  |-  ( ( ( A  e.  (
LocFin `  J )  /\  x  e.  U. A )  /\  x  e.  n
)  ->  ( {
s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1514expimpd 603 . . . . 5  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  -> 
( ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
1615rexlimdvw 2951 . . . 4  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  -> 
( E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  ->  { s  e.  A  |  x  e.  s }  e.  Fin ) )
177, 16mpd 15 . . 3  |-  ( ( A  e.  ( LocFin `  J )  /\  x  e.  U. A )  ->  { s  e.  A  |  x  e.  s }  e.  Fin )
1817ralrimiva 2871 . 2  |-  ( A  e.  ( LocFin `  J
)  ->  A. x  e.  U. A { s  e.  A  |  x  e.  s }  e.  Fin )
192isptfin 29618 . 2  |-  ( A  e.  ( LocFin `  J
)  ->  ( A  e.  PtFin 
<-> 
A. x  e.  U. A { s  e.  A  |  x  e.  s }  e.  Fin )
)
2018, 19mpbird 232 1  |-  ( A  e.  ( LocFin `  J
)  ->  A  e.  PtFin
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1762    =/= wne 2655   A.wral 2807   E.wrex 2808   {crab 2811    i^i cin 3468    C_ wss 3469   (/)c0 3778   U.cuni 4238   ` cfv 5579   Fincfn 7506   PtFincptfin 29584   LocFinclocfin 29585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3108  df-sbc 3325  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-om 6672  df-er 7301  df-en 7507  df-fin 7510  df-top 19159  df-ptfin 29588  df-locfin 29589
This theorem is referenced by:  locfindis  29628
  Copyright terms: Public domain W3C validator