MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letsr Structured version   Unicode version

Theorem letsr 15714
Description: The "less than or equal to" relationship on the extended reals is a toset. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
letsr  |-  <_  e.  TosetRel

Proof of Theorem letsr
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lerel 9651 . . 3  |-  Rel  <_
2 lerelxr 9650 . . . . . . . . . . 11  |-  <_  C_  ( RR*  X.  RR* )
32brel 5048 . . . . . . . . . 10  |-  ( x  <_  y  ->  (
x  e.  RR*  /\  y  e.  RR* ) )
43adantr 465 . . . . . . . . 9  |-  ( ( x  <_  y  /\  y  <_  z )  -> 
( x  e.  RR*  /\  y  e.  RR* )
)
54simpld 459 . . . . . . . 8  |-  ( ( x  <_  y  /\  y  <_  z )  ->  x  e.  RR* )
64simprd 463 . . . . . . . 8  |-  ( ( x  <_  y  /\  y  <_  z )  -> 
y  e.  RR* )
72brel 5048 . . . . . . . . . 10  |-  ( y  <_  z  ->  (
y  e.  RR*  /\  z  e.  RR* ) )
87simprd 463 . . . . . . . . 9  |-  ( y  <_  z  ->  z  e.  RR* )
98adantl 466 . . . . . . . 8  |-  ( ( x  <_  y  /\  y  <_  z )  -> 
z  e.  RR* )
105, 6, 93jca 1176 . . . . . . 7  |-  ( ( x  <_  y  /\  y  <_  z )  -> 
( x  e.  RR*  /\  y  e.  RR*  /\  z  e.  RR* ) )
11 xrletr 11361 . . . . . . 7  |-  ( ( x  e.  RR*  /\  y  e.  RR*  /\  z  e. 
RR* )  ->  (
( x  <_  y  /\  y  <_  z )  ->  x  <_  z
) )
1210, 11mpcom 36 . . . . . 6  |-  ( ( x  <_  y  /\  y  <_  z )  ->  x  <_  z )
1312ax-gen 1601 . . . . 5  |-  A. z
( ( x  <_ 
y  /\  y  <_  z )  ->  x  <_  z )
1413gen2 1602 . . . 4  |-  A. x A. y A. z ( ( x  <_  y  /\  y  <_  z )  ->  x  <_  z
)
15 cotr 5379 . . . 4  |-  ( (  <_  o.  <_  )  C_ 
<_ 
<-> 
A. x A. y A. z ( ( x  <_  y  /\  y  <_  z )  ->  x  <_  z ) )
1614, 15mpbir 209 . . 3  |-  (  <_  o.  <_  )  C_  <_
17 asymref 5383 . . . 4  |-  ( (  <_  i^i  `'  <_  )  =  (  _I  |`  U. U.  <_  )  <->  A. x  e.  U. U. 
<_  A. y ( ( x  <_  y  /\  y  <_  x )  <->  x  =  y ) )
18 simpr 461 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  (
x  <_  y  /\  y  <_  x ) )  ->  ( x  <_ 
y  /\  y  <_  x ) )
192brel 5048 . . . . . . . . . . . 12  |-  ( y  <_  x  ->  (
y  e.  RR*  /\  x  e.  RR* ) )
2019simpld 459 . . . . . . . . . . 11  |-  ( y  <_  x  ->  y  e.  RR* )
2120adantl 466 . . . . . . . . . 10  |-  ( ( x  <_  y  /\  y  <_  x )  -> 
y  e.  RR* )
22 xrletri3 11358 . . . . . . . . . 10  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  =  y  <->  ( x  <_  y  /\  y  <_  x ) ) )
2321, 22sylan2 474 . . . . . . . . 9  |-  ( ( x  e.  RR*  /\  (
x  <_  y  /\  y  <_  x ) )  ->  ( x  =  y  <->  ( x  <_ 
y  /\  y  <_  x ) ) )
2418, 23mpbird 232 . . . . . . . 8  |-  ( ( x  e.  RR*  /\  (
x  <_  y  /\  y  <_  x ) )  ->  x  =  y )
2524ex 434 . . . . . . 7  |-  ( x  e.  RR*  ->  ( ( x  <_  y  /\  y  <_  x )  ->  x  =  y )
)
26 xrleid 11356 . . . . . . . . 9  |-  ( x  e.  RR*  ->  x  <_  x )
2726, 26jca 532 . . . . . . . 8  |-  ( x  e.  RR*  ->  ( x  <_  x  /\  x  <_  x ) )
28 breq2 4451 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  <_  x  <->  x  <_  y ) )
29 breq1 4450 . . . . . . . . 9  |-  ( x  =  y  ->  (
x  <_  x  <->  y  <_  x ) )
3028, 29anbi12d 710 . . . . . . . 8  |-  ( x  =  y  ->  (
( x  <_  x  /\  x  <_  x )  <-> 
( x  <_  y  /\  y  <_  x ) ) )
3127, 30syl5ibcom 220 . . . . . . 7  |-  ( x  e.  RR*  ->  ( x  =  y  ->  (
x  <_  y  /\  y  <_  x ) ) )
3225, 31impbid 191 . . . . . 6  |-  ( x  e.  RR*  ->  ( ( x  <_  y  /\  y  <_  x )  <->  x  =  y ) )
3332alrimiv 1695 . . . . 5  |-  ( x  e.  RR*  ->  A. y
( ( x  <_ 
y  /\  y  <_  x )  <->  x  =  y
) )
34 lefld 15713 . . . . . 6  |-  RR*  =  U. U.  <_
3534eqcomi 2480 . . . . 5  |-  U. U.  <_  =  RR*
3633, 35eleq2s 2575 . . . 4  |-  ( x  e.  U. U.  <_  ->  A. y ( ( x  <_  y  /\  y  <_  x )  <->  x  =  y ) )
3717, 36mprgbir 2828 . . 3  |-  (  <_  i^i  `'  <_  )  =  (  _I  |`  U. U.  <_  )
38 xrex 11217 . . . . . 6  |-  RR*  e.  _V
3938, 38xpex 6588 . . . . 5  |-  ( RR*  X. 
RR* )  e.  _V
4039, 2ssexi 4592 . . . 4  |-  <_  e.  _V
41 isps 15689 . . . 4  |-  (  <_  e.  _V  ->  (  <_  e.  PosetRel  <->  ( Rel  <_  /\  (  <_  o.  <_  )  C_  <_  /\  (  <_  i^i  `' 
<_  )  =  (  _I  |`  U. U.  <_  ) ) ) )
4240, 41ax-mp 5 . . 3  |-  (  <_  e. 
PosetRel  <-> 
( Rel  <_  /\  (  <_  o.  <_  )  C_  <_  /\  (  <_  i^i  `' 
<_  )  =  (  _I  |`  U. U.  <_  ) ) )
431, 16, 37, 42mpbir3an 1178 . 2  |-  <_  e.  PosetRel
44 xrletri 11357 . . . 4  |-  ( ( x  e.  RR*  /\  y  e.  RR* )  ->  (
x  <_  y  \/  y  <_  x ) )
4544rgen2a 2891 . . 3  |-  A. x  e.  RR*  A. y  e. 
RR*  ( x  <_ 
y  \/  y  <_  x )
46 qfto 5388 . . 3  |-  ( (
RR*  X.  RR* )  C_  (  <_  u.  `'  <_  )  <->  A. x  e.  RR*  A. y  e.  RR*  ( x  <_ 
y  \/  y  <_  x ) )
4745, 46mpbir 209 . 2  |-  ( RR*  X. 
RR* )  C_  (  <_  u.  `'  <_  )
48 ledm 15711 . . 3  |-  RR*  =  dom  <_
4948istsr 15704 . 2  |-  (  <_  e. 
TosetRel  <-> 
(  <_  e.  PosetRel  /\  ( RR*  X.  RR* )  C_  (  <_  u.  `'  <_  )
) )
5043, 47, 49mpbir2an 918 1  |-  <_  e.  TosetRel
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2814   _Vcvv 3113    u. cun 3474    i^i cin 3475    C_ wss 3476   U.cuni 4245   class class class wbr 4447    _I cid 4790    X. cxp 4997   `'ccnv 4998    |` cres 5001    o. ccom 5003   Rel wrel 5004   RR*cxr 9627    <_ cle 9629   PosetRelcps 15685    TosetRel ctsr 15686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-pre-lttri 9566  ax-pre-lttrn 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-ps 15687  df-tsr 15688
This theorem is referenced by:  cnfldle  18228  letopon  19500  leordtval2  19507  leordtval  19508  iccordt  19509  ordtrestixx  19517  xrge0tsms  21102  icopnfhmeo  21206  iccpnfhmeo  21208  xrhmeo  21209  xrhaus  27280  xrge0tsmsd  27466  cnvordtrestixx  27559  xrmulc1cn  27576  xrge0iifhmeo  27582
  Copyright terms: Public domain W3C validator