MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letrp1 Structured version   Unicode version

Theorem letrp1 10375
Description: A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005.)
Assertion
Ref Expression
letrp1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  A  <_  ( B  +  1 ) )

Proof of Theorem letrp1
StepHypRef Expression
1 ltp1 10371 . . . . 5  |-  ( B  e.  RR  ->  B  <  ( B  +  1 ) )
21adantl 466 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  B  <  ( B  +  1 ) )
3 peano2re 9743 . . . . . 6  |-  ( B  e.  RR  ->  ( B  +  1 )  e.  RR )
43ancli 551 . . . . 5  |-  ( B  e.  RR  ->  ( B  e.  RR  /\  ( B  +  1 )  e.  RR ) )
5 lelttr 9666 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( B  +  1 )  e.  RR )  -> 
( ( A  <_  B  /\  B  <  ( B  +  1 ) )  ->  A  <  ( B  +  1 ) ) )
653expb 1192 . . . . 5  |-  ( ( A  e.  RR  /\  ( B  e.  RR  /\  ( B  +  1 )  e.  RR ) )  ->  ( ( A  <_  B  /\  B  <  ( B  +  1 ) )  ->  A  <  ( B  +  1 ) ) )
74, 6sylan2 474 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  /\  B  <  ( B  +  1 ) )  ->  A  <  ( B  +  1 ) ) )
82, 7mpan2d 674 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  ->  A  <  ( B  +  1 ) ) )
983impia 1188 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  A  <  ( B  +  1 ) )
10 ltle 9664 . . . 4  |-  ( ( A  e.  RR  /\  ( B  +  1
)  e.  RR )  ->  ( A  < 
( B  +  1 )  ->  A  <_  ( B  +  1 ) ) )
113, 10sylan2 474 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  ( B  +  1 )  ->  A  <_  ( B  +  1 ) ) )
12113adant3 1011 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  ( A  <  ( B  + 
1 )  ->  A  <_  ( B  +  1 ) ) )
139, 12mpd 15 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <_  B )  ->  A  <_  ( B  +  1 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 968    e. wcel 1762   class class class wbr 4442  (class class class)co 6277   RRcr 9482   1c1 9484    + caddc 9486    < clt 9619    <_ cle 9620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799
This theorem is referenced by:  peano2uz  11125  jm2.27dlem2  30547  stoweidlem20  31277
  Copyright terms: Public domain W3C validator