MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  letrii Structured version   Unicode version

Theorem letrii 9659
Description: Trichotomy law for 'less than or equal to'. (Contributed by NM, 2-Aug-1999.)
Hypotheses
Ref Expression
lt.1  |-  A  e.  RR
lt.2  |-  B  e.  RR
Assertion
Ref Expression
letrii  |-  ( A  <_  B  \/  B  <_  A )

Proof of Theorem letrii
StepHypRef Expression
1 lt.2 . . . 4  |-  B  e.  RR
2 lt.1 . . . 4  |-  A  e.  RR
31, 2ltnlei 9655 . . 3  |-  ( B  <  A  <->  -.  A  <_  B )
41, 2ltlei 9656 . . 3  |-  ( B  <  A  ->  B  <_  A )
53, 4sylbir 213 . 2  |-  ( -.  A  <_  B  ->  B  <_  A )
65orri 374 1  |-  ( A  <_  B  \/  B  <_  A )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    \/ wo 366    e. wcel 1840   class class class wbr 4392   RRcr 9439    < clt 9576    <_ cle 9577
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-8 1842  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pow 4569  ax-pr 4627  ax-un 6528  ax-resscn 9497  ax-pre-lttri 9514
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-nel 2599  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-sbc 3275  df-csb 3371  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-pw 3954  df-sn 3970  df-pr 3972  df-op 3976  df-uni 4189  df-br 4393  df-opab 4451  df-mpt 4452  df-id 4735  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5487  df-fun 5525  df-fn 5526  df-f 5527  df-f1 5528  df-fo 5529  df-f1o 5530  df-fv 5531  df-er 7266  df-en 7473  df-dom 7474  df-sdom 7475  df-pnf 9578  df-mnf 9579  df-xr 9580  df-ltxr 9581  df-le 9582
This theorem is referenced by:  divalglem1  14151
  Copyright terms: Public domain W3C validator