Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lerabdioph Structured version   Unicode version

Theorem lerabdioph 29267
Description: Diophantine set builder for the less or equals relation. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
lerabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  <_  B }  e.  (Dioph `  N
) )
Distinct variable group:    t, N
Allowed substitution hints:    A( t)    B( t)

Proof of Theorem lerabdioph
StepHypRef Expression
1 rabdiophlem1 29263 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) A  e.  ZZ )
2 rabdiophlem1 29263 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ )
3 znn0sub 10779 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <_  B  <->  ( B  -  A )  e.  NN0 ) )
43ralimi 2806 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) ( A  <_  B  <->  ( B  -  A )  e.  NN0 ) )
5 r19.26 2931 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  <->  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) A  e.  ZZ  /\  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ ) )
6 rabbi 2981 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  <_  B  <->  ( B  -  A )  e.  NN0 ) 
<->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  <_  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  ( B  -  A )  e.  NN0 } )
74, 5, 63imtr3i 265 . . . 4  |-  ( ( A. t  e.  ( NN0  ^m  ( 1 ... N ) ) A  e.  ZZ  /\  A. t  e.  ( NN0 
^m  ( 1 ... N ) ) B  e.  ZZ )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  <_  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  ( B  -  A )  e.  NN0 } )
81, 2, 7syl2an 477 . . 3  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  <_  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  ( B  -  A )  e.  NN0 } )
983adant1 1006 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  <_  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  ( B  -  A )  e.  NN0 } )
10 simp1 988 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  N  e.  NN0 )
11 mzpsubmpt 29203 . . . . 5  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  B )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  ( B  -  A
) )  e.  (mzPoly `  ( 1 ... N
) ) )
1211ancoms 453 . . . 4  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  ( B  -  A
) )  e.  (mzPoly `  ( 1 ... N
) ) )
13123adant1 1006 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  -> 
( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  ( B  -  A
) )  e.  (mzPoly `  ( 1 ... N
) ) )
14 elnn0rabdioph 29265 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  ( B  -  A
) )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  ( B  -  A )  e.  NN0 }  e.  (Dioph `  N
) )
1510, 13, 14syl2anc 661 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  ( B  -  A )  e.  NN0 }  e.  (Dioph `  N
) )
169, 15eqeltrd 2536 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  <_  B }  e.  (Dioph `  N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1757   A.wral 2792   {crab 2796   class class class wbr 4376    |-> cmpt 4434   ` cfv 5502  (class class class)co 6176    ^m cmap 7300   1c1 9370    <_ cle 9506    - cmin 9682   NN0cn0 10666   ZZcz 10733   ...cfz 11524  mzPolycmzp 29182  Diophcdioph 29217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1709  ax-7 1729  ax-8 1759  ax-9 1761  ax-10 1776  ax-11 1781  ax-12 1793  ax-13 1944  ax-ext 2429  ax-rep 4487  ax-sep 4497  ax-nul 4505  ax-pow 4554  ax-pr 4615  ax-un 6458  ax-inf2 7934  ax-cnex 9425  ax-resscn 9426  ax-1cn 9427  ax-icn 9428  ax-addcl 9429  ax-addrcl 9430  ax-mulcl 9431  ax-mulrcl 9432  ax-mulcom 9433  ax-addass 9434  ax-mulass 9435  ax-distr 9436  ax-i2m1 9437  ax-1ne0 9438  ax-1rid 9439  ax-rnegex 9440  ax-rrecex 9441  ax-cnre 9442  ax-pre-lttri 9443  ax-pre-lttrn 9444  ax-pre-ltadd 9445  ax-pre-mulgt0 9446
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1702  df-eu 2263  df-mo 2264  df-clab 2436  df-cleq 2442  df-clel 2445  df-nfc 2598  df-ne 2643  df-nel 2644  df-ral 2797  df-rex 2798  df-reu 2799  df-rmo 2800  df-rab 2801  df-v 3056  df-sbc 3271  df-csb 3373  df-dif 3415  df-un 3417  df-in 3419  df-ss 3426  df-pss 3428  df-nul 3722  df-if 3876  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4176  df-int 4213  df-iun 4257  df-br 4377  df-opab 4435  df-mpt 4436  df-tr 4470  df-eprel 4716  df-id 4720  df-po 4725  df-so 4726  df-fr 4763  df-we 4765  df-ord 4806  df-on 4807  df-lim 4808  df-suc 4809  df-xp 4930  df-rel 4931  df-cnv 4932  df-co 4933  df-dm 4934  df-rn 4935  df-res 4936  df-ima 4937  df-iota 5465  df-fun 5504  df-fn 5505  df-f 5506  df-f1 5507  df-fo 5508  df-f1o 5509  df-fv 5510  df-riota 6137  df-ov 6179  df-oprab 6180  df-mpt2 6181  df-of 6406  df-om 6563  df-1st 6663  df-2nd 6664  df-recs 6918  df-rdg 6952  df-1o 7006  df-oadd 7010  df-er 7187  df-map 7302  df-en 7397  df-dom 7398  df-sdom 7399  df-fin 7400  df-card 8196  df-cda 8424  df-pnf 9507  df-mnf 9508  df-xr 9509  df-ltxr 9510  df-le 9511  df-sub 9684  df-neg 9685  df-nn 10410  df-n0 10667  df-z 10734  df-uz 10949  df-fz 11525  df-hash 12191  df-mzpcl 29183  df-mzp 29184  df-dioph 29218
This theorem is referenced by:  eluzrabdioph  29268  rmydioph  29487
  Copyright terms: Public domain W3C validator