MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval2 Structured version   Unicode version

Theorem leordtval2 20220
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )
leordtval.2  |-  B  =  ran  ( x  e. 
RR*  |->  ( -oo [,) x ) )
Assertion
Ref Expression
leordtval2  |-  (ordTop `  <_  )  =  ( topGen `  ( fi `  ( A  u.  B )
) )

Proof of Theorem leordtval2
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 letsr 16466 . . 3  |-  <_  e.  TosetRel
2 ledm 16463 . . . 4  |-  RR*  =  dom  <_
3 leordtval.1 . . . . 5  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )
43leordtvallem1 20218 . . . 4  |-  A  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  y  <_  x } )
5 leordtval.2 . . . . 5  |-  B  =  ran  ( x  e. 
RR*  |->  ( -oo [,) x ) )
63, 5leordtvallem2 20219 . . . 4  |-  B  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  x  <_  y } )
72, 4, 6ordtval 20197 . . 3  |-  (  <_  e. 
TosetRel  ->  (ordTop `  <_  )  =  ( topGen `  ( fi `  ( { RR* }  u.  ( A  u.  B
) ) ) ) )
81, 7ax-mp 5 . 2  |-  (ordTop `  <_  )  =  ( topGen `  ( fi `  ( { RR* }  u.  ( A  u.  B )
) ) )
9 snex 4660 . . . . 5  |-  { RR* }  e.  _V
10 xrex 11301 . . . . . . 7  |-  RR*  e.  _V
1110pwex 4605 . . . . . 6  |-  ~P RR*  e.  _V
12 eqid 2423 . . . . . . . . . 10  |-  ( x  e.  RR*  |->  ( x (,] +oo ) )  =  ( x  e. 
RR*  |->  ( x (,] +oo ) )
13 iocssxr 11720 . . . . . . . . . . . 12  |-  ( x (,] +oo )  C_  RR*
1410elpw2 4586 . . . . . . . . . . . 12  |-  ( ( x (,] +oo )  e.  ~P RR*  <->  ( x (,] +oo )  C_  RR* )
1513, 14mpbir 213 . . . . . . . . . . 11  |-  ( x (,] +oo )  e. 
~P RR*
1615a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR*  ->  ( x (,] +oo )  e. 
~P RR* )
1712, 16fmpti 6058 . . . . . . . . 9  |-  ( x  e.  RR*  |->  ( x (,] +oo ) ) : RR* --> ~P RR*
18 frn 5750 . . . . . . . . 9  |-  ( ( x  e.  RR*  |->  ( x (,] +oo ) ) : RR* --> ~P RR*  ->  ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )  C_  ~P RR* )
1917, 18ax-mp 5 . . . . . . . 8  |-  ran  (
x  e.  RR*  |->  ( x (,] +oo ) ) 
C_  ~P RR*
203, 19eqsstri 3495 . . . . . . 7  |-  A  C_  ~P RR*
21 eqid 2423 . . . . . . . . . 10  |-  ( x  e.  RR*  |->  ( -oo [,) x ) )  =  ( x  e.  RR*  |->  ( -oo [,) x ) )
22 icossxr 11721 . . . . . . . . . . . 12  |-  ( -oo [,) x )  C_  RR*
2310elpw2 4586 . . . . . . . . . . . 12  |-  ( ( -oo [,) x )  e.  ~P RR*  <->  ( -oo [,) x )  C_  RR* )
2422, 23mpbir 213 . . . . . . . . . . 11  |-  ( -oo [,) x )  e.  ~P RR*
2524a1i 11 . . . . . . . . . 10  |-  ( x  e.  RR*  ->  ( -oo [,) x )  e.  ~P RR* )
2621, 25fmpti 6058 . . . . . . . . 9  |-  ( x  e.  RR*  |->  ( -oo [,) x ) ) :
RR* --> ~P RR*
27 frn 5750 . . . . . . . . 9  |-  ( ( x  e.  RR*  |->  ( -oo [,) x ) ) :
RR* --> ~P RR*  ->  ran  ( x  e.  RR*  |->  ( -oo [,) x ) )  C_  ~P RR* )
2826, 27ax-mp 5 . . . . . . . 8  |-  ran  (
x  e.  RR*  |->  ( -oo [,) x ) )  C_  ~P RR*
295, 28eqsstri 3495 . . . . . . 7  |-  B  C_  ~P RR*
3020, 29unssi 3642 . . . . . 6  |-  ( A  u.  B )  C_  ~P RR*
3111, 30ssexi 4567 . . . . 5  |-  ( A  u.  B )  e. 
_V
329, 31unex 6601 . . . 4  |-  ( {
RR* }  u.  ( A  u.  B )
)  e.  _V
33 ssun2 3631 . . . 4  |-  ( A  u.  B )  C_  ( { RR* }  u.  ( A  u.  B
) )
34 fiss 7942 . . . 4  |-  ( ( ( { RR* }  u.  ( A  u.  B
) )  e.  _V  /\  ( A  u.  B
)  C_  ( { RR* }  u.  ( A  u.  B ) ) )  ->  ( fi `  ( A  u.  B
) )  C_  ( fi `  ( { RR* }  u.  ( A  u.  B ) ) ) )
3532, 33, 34mp2an 677 . . 3  |-  ( fi
`  ( A  u.  B ) )  C_  ( fi `  ( {
RR* }  u.  ( A  u.  B )
) )
36 fvex 5889 . . . . 5  |-  ( topGen `  ( fi `  ( A  u.  B )
) )  e.  _V
37 ovex 6331 . . . . . . . . . 10  |-  ( 0 (,] +oo )  e. 
_V
38 ovex 6331 . . . . . . . . . 10  |-  ( -oo [,) 1 )  e.  _V
3937, 38unipr 4230 . . . . . . . . 9  |-  U. {
( 0 (,] +oo ) ,  ( -oo [,) 1 ) }  =  ( ( 0 (,] +oo )  u.  ( -oo [,) 1 ) )
40 iocssxr 11720 . . . . . . . . . . 11  |-  ( 0 (,] +oo )  C_  RR*
41 icossxr 11721 . . . . . . . . . . 11  |-  ( -oo [,) 1 )  C_  RR*
4240, 41unssi 3642 . . . . . . . . . 10  |-  ( ( 0 (,] +oo )  u.  ( -oo [,) 1
) )  C_  RR*
43 mnfxr 11416 . . . . . . . . . . . . 13  |- -oo  e.  RR*
44 0xr 9689 . . . . . . . . . . . . 13  |-  0  e.  RR*
45 pnfxr 11414 . . . . . . . . . . . . 13  |- +oo  e.  RR*
46 mnflt0 11429 . . . . . . . . . . . . . 14  |- -oo  <  0
47 0lepnf 11435 . . . . . . . . . . . . . 14  |-  0  <_ +oo
48 df-icc 11644 . . . . . . . . . . . . . . 15  |-  [,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <_  y ) } )
49 df-ioc 11642 . . . . . . . . . . . . . . 15  |-  (,]  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <  z  /\  z  <_  y ) } )
50 xrltnle 9703 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  w  e.  RR* )  ->  (
0  <  w  <->  -.  w  <_  0 ) )
51 xrletr 11457 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR*  /\  0  e.  RR*  /\ +oo  e.  RR* )  ->  ( (
w  <_  0  /\  0  <_ +oo )  ->  w  <_ +oo ) )
52 xrlttr 11441 . . . . . . . . . . . . . . . 16  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  w  e. 
RR* )  ->  (
( -oo  <  0  /\  0  <  w )  -> -oo  <  w ) )
53 xrltle 11450 . . . . . . . . . . . . . . . . 17  |-  ( ( -oo  e.  RR*  /\  w  e.  RR* )  ->  ( -oo  <  w  -> -oo  <_  w ) )
54533adant2 1025 . . . . . . . . . . . . . . . 16  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  w  e. 
RR* )  ->  ( -oo  <  w  -> -oo  <_  w ) )
5552, 54syld 46 . . . . . . . . . . . . . . 15  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\  w  e. 
RR* )  ->  (
( -oo  <  0  /\  0  <  w )  -> -oo  <_  w ) )
5648, 49, 50, 48, 51, 55ixxun 11653 . . . . . . . . . . . . . 14  |-  ( ( ( -oo  e.  RR*  /\  0  e.  RR*  /\ +oo  e.  RR* )  /\  ( -oo  <  0  /\  0  <_ +oo ) )  -> 
( ( -oo [,] 0 )  u.  (
0 (,] +oo )
)  =  ( -oo [,] +oo ) )
5746, 47, 56mpanr12 690 . . . . . . . . . . . . 13  |-  ( ( -oo  e.  RR*  /\  0  e.  RR*  /\ +oo  e.  RR* )  ->  ( ( -oo [,] 0 )  u.  ( 0 (,] +oo ) )  =  ( -oo [,] +oo )
)
5843, 44, 45, 57mp3an 1361 . . . . . . . . . . . 12  |-  ( ( -oo [,] 0 )  u.  ( 0 (,] +oo ) )  =  ( -oo [,] +oo )
59 1re 9644 . . . . . . . . . . . . . . 15  |-  1  e.  RR
6059rexri 9695 . . . . . . . . . . . . . 14  |-  1  e.  RR*
61 0lt1 10138 . . . . . . . . . . . . . 14  |-  0  <  1
62 df-ico 11643 . . . . . . . . . . . . . . 15  |-  [,)  =  ( x  e.  RR* ,  y  e.  RR*  |->  { z  e.  RR*  |  (
x  <_  z  /\  z  <  y ) } )
63 xrlelttr 11455 . . . . . . . . . . . . . . 15  |-  ( ( w  e.  RR*  /\  0  e.  RR*  /\  1  e. 
RR* )  ->  (
( w  <_  0  /\  0  <  1
)  ->  w  <  1 ) )
6462, 48, 63ixxss2 11656 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR*  /\  0  <  1 )  ->  ( -oo [,] 0 )  C_  ( -oo [,) 1 ) )
6560, 61, 64mp2an 677 . . . . . . . . . . . . 13  |-  ( -oo [,] 0 )  C_  ( -oo [,) 1 )
66 unss1 3636 . . . . . . . . . . . . 13  |-  ( ( -oo [,] 0 ) 
C_  ( -oo [,) 1 )  ->  (
( -oo [,] 0 )  u.  ( 0 (,] +oo ) )  C_  (
( -oo [,) 1 )  u.  ( 0 (,] +oo ) ) )
6765, 66ax-mp 5 . . . . . . . . . . . 12  |-  ( ( -oo [,] 0 )  u.  ( 0 (,] +oo ) )  C_  (
( -oo [,) 1 )  u.  ( 0 (,] +oo ) )
6858, 67eqsstr3i 3496 . . . . . . . . . . 11  |-  ( -oo [,] +oo )  C_  (
( -oo [,) 1 )  u.  ( 0 (,] +oo ) )
69 iccmax 11712 . . . . . . . . . . 11  |-  ( -oo [,] +oo )  =  RR*
70 uncom 3611 . . . . . . . . . . 11  |-  ( ( -oo [,) 1 )  u.  ( 0 (,] +oo ) )  =  ( ( 0 (,] +oo )  u.  ( -oo [,) 1 ) )
7168, 69, 703sstr3i 3503 . . . . . . . . . 10  |-  RR*  C_  (
( 0 (,] +oo )  u.  ( -oo [,) 1 ) )
7242, 71eqssi 3481 . . . . . . . . 9  |-  ( ( 0 (,] +oo )  u.  ( -oo [,) 1
) )  =  RR*
7339, 72eqtri 2452 . . . . . . . 8  |-  U. {
( 0 (,] +oo ) ,  ( -oo [,) 1 ) }  =  RR*
74 fvex 5889 . . . . . . . . 9  |-  ( fi
`  ( A  u.  B ) )  e. 
_V
75 ssun1 3630 . . . . . . . . . . . 12  |-  A  C_  ( A  u.  B
)
76 eqid 2423 . . . . . . . . . . . . . . 15  |-  ( 0 (,] +oo )  =  ( 0 (,] +oo )
77 oveq1 6310 . . . . . . . . . . . . . . . . 17  |-  ( x  =  0  ->  (
x (,] +oo )  =  ( 0 (,] +oo ) )
7877eqeq2d 2437 . . . . . . . . . . . . . . . 16  |-  ( x  =  0  ->  (
( 0 (,] +oo )  =  ( x (,] +oo )  <->  ( 0 (,] +oo )  =  ( 0 (,] +oo ) ) )
7978rspcev 3183 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  RR*  /\  (
0 (,] +oo )  =  ( 0 (,] +oo ) )  ->  E. x  e.  RR*  ( 0 (,] +oo )  =  (
x (,] +oo )
)
8044, 76, 79mp2an 677 . . . . . . . . . . . . . 14  |-  E. x  e.  RR*  ( 0 (,] +oo )  =  (
x (,] +oo )
81 ovex 6331 . . . . . . . . . . . . . . 15  |-  ( x (,] +oo )  e. 
_V
8212, 81elrnmpti 5102 . . . . . . . . . . . . . 14  |-  ( ( 0 (,] +oo )  e.  ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )  <->  E. x  e.  RR*  ( 0 (,] +oo )  =  (
x (,] +oo )
)
8380, 82mpbir 213 . . . . . . . . . . . . 13  |-  ( 0 (,] +oo )  e. 
ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )
8483, 3eleqtrri 2510 . . . . . . . . . . . 12  |-  ( 0 (,] +oo )  e.  A
8575, 84sselii 3462 . . . . . . . . . . 11  |-  ( 0 (,] +oo )  e.  ( A  u.  B
)
86 ssun2 3631 . . . . . . . . . . . 12  |-  B  C_  ( A  u.  B
)
87 eqid 2423 . . . . . . . . . . . . . . 15  |-  ( -oo [,) 1 )  =  ( -oo [,) 1 )
88 oveq2 6311 . . . . . . . . . . . . . . . . 17  |-  ( x  =  1  ->  ( -oo [,) x )  =  ( -oo [,) 1
) )
8988eqeq2d 2437 . . . . . . . . . . . . . . . 16  |-  ( x  =  1  ->  (
( -oo [,) 1 )  =  ( -oo [,) x )  <->  ( -oo [,) 1 )  =  ( -oo [,) 1 ) ) )
9089rspcev 3183 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR*  /\  ( -oo [,) 1 )  =  ( -oo [,) 1
) )  ->  E. x  e.  RR*  ( -oo [,) 1 )  =  ( -oo [,) x ) )
9160, 87, 90mp2an 677 . . . . . . . . . . . . . 14  |-  E. x  e.  RR*  ( -oo [,) 1 )  =  ( -oo [,) x )
92 ovex 6331 . . . . . . . . . . . . . . 15  |-  ( -oo [,) x )  e.  _V
9321, 92elrnmpti 5102 . . . . . . . . . . . . . 14  |-  ( ( -oo [,) 1 )  e.  ran  ( x  e.  RR*  |->  ( -oo [,) x ) )  <->  E. x  e.  RR*  ( -oo [,) 1 )  =  ( -oo [,) x ) )
9491, 93mpbir 213 . . . . . . . . . . . . 13  |-  ( -oo [,) 1 )  e.  ran  ( x  e.  RR*  |->  ( -oo [,) x ) )
9594, 5eleqtrri 2510 . . . . . . . . . . . 12  |-  ( -oo [,) 1 )  e.  B
9686, 95sselii 3462 . . . . . . . . . . 11  |-  ( -oo [,) 1 )  e.  ( A  u.  B )
97 prssi 4154 . . . . . . . . . . 11  |-  ( ( ( 0 (,] +oo )  e.  ( A  u.  B )  /\  ( -oo [,) 1 )  e.  ( A  u.  B
) )  ->  { ( 0 (,] +oo ) ,  ( -oo [,) 1
) }  C_  ( A  u.  B )
)
9885, 96, 97mp2an 677 . . . . . . . . . 10  |-  { ( 0 (,] +oo ) ,  ( -oo [,) 1
) }  C_  ( A  u.  B )
99 ssfii 7937 . . . . . . . . . . 11  |-  ( ( A  u.  B )  e.  _V  ->  ( A  u.  B )  C_  ( fi `  ( A  u.  B )
) )
10031, 99ax-mp 5 . . . . . . . . . 10  |-  ( A  u.  B )  C_  ( fi `  ( A  u.  B ) )
10198, 100sstri 3474 . . . . . . . . 9  |-  { ( 0 (,] +oo ) ,  ( -oo [,) 1
) }  C_  ( fi `  ( A  u.  B ) )
102 eltg3i 19968 . . . . . . . . 9  |-  ( ( ( fi `  ( A  u.  B )
)  e.  _V  /\  { ( 0 (,] +oo ) ,  ( -oo [,) 1 ) }  C_  ( fi `  ( A  u.  B ) ) )  ->  U. { ( 0 (,] +oo ) ,  ( -oo [,) 1
) }  e.  (
topGen `  ( fi `  ( A  u.  B
) ) ) )
10374, 101, 102mp2an 677 . . . . . . . 8  |-  U. {
( 0 (,] +oo ) ,  ( -oo [,) 1 ) }  e.  ( topGen `  ( fi `  ( A  u.  B
) ) )
10473, 103eqeltrri 2508 . . . . . . 7  |-  RR*  e.  ( topGen `  ( fi `  ( A  u.  B
) ) )
105 snssi 4142 . . . . . . 7  |-  ( RR*  e.  ( topGen `  ( fi `  ( A  u.  B
) ) )  ->  { RR* }  C_  ( topGen `
 ( fi `  ( A  u.  B
) ) ) )
106104, 105ax-mp 5 . . . . . 6  |-  { RR* } 
C_  ( topGen `  ( fi `  ( A  u.  B ) ) )
107 bastg 19973 . . . . . . . 8  |-  ( ( fi `  ( A  u.  B ) )  e.  _V  ->  ( fi `  ( A  u.  B ) )  C_  ( topGen `  ( fi `  ( A  u.  B
) ) ) )
10874, 107ax-mp 5 . . . . . . 7  |-  ( fi
`  ( A  u.  B ) )  C_  ( topGen `  ( fi `  ( A  u.  B
) ) )
109100, 108sstri 3474 . . . . . 6  |-  ( A  u.  B )  C_  ( topGen `  ( fi `  ( A  u.  B
) ) )
110106, 109unssi 3642 . . . . 5  |-  ( {
RR* }  u.  ( A  u.  B )
)  C_  ( topGen `  ( fi `  ( A  u.  B )
) )
111 fiss 7942 . . . . 5  |-  ( ( ( topGen `  ( fi `  ( A  u.  B
) ) )  e. 
_V  /\  ( { RR* }  u.  ( A  u.  B ) ) 
C_  ( topGen `  ( fi `  ( A  u.  B ) ) ) )  ->  ( fi `  ( { RR* }  u.  ( A  u.  B
) ) )  C_  ( fi `  ( topGen `  ( fi `  ( A  u.  B )
) ) ) )
11236, 110, 111mp2an 677 . . . 4  |-  ( fi
`  ( { RR* }  u.  ( A  u.  B ) ) ) 
C_  ( fi `  ( topGen `  ( fi `  ( A  u.  B
) ) ) )
113 fibas 19985 . . . . 5  |-  ( fi
`  ( A  u.  B ) )  e.  TopBases
114 tgcl 19977 . . . . 5  |-  ( ( fi `  ( A  u.  B ) )  e.  TopBases  ->  ( topGen `  ( fi `  ( A  u.  B ) ) )  e.  Top )
115 fitop 19922 . . . . 5  |-  ( (
topGen `  ( fi `  ( A  u.  B
) ) )  e. 
Top  ->  ( fi `  ( topGen `  ( fi `  ( A  u.  B
) ) ) )  =  ( topGen `  ( fi `  ( A  u.  B ) ) ) )
116113, 114, 115mp2b 10 . . . 4  |-  ( fi
`  ( topGen `  ( fi `  ( A  u.  B ) ) ) )  =  ( topGen `  ( fi `  ( A  u.  B )
) )
117112, 116sseqtri 3497 . . 3  |-  ( fi
`  ( { RR* }  u.  ( A  u.  B ) ) ) 
C_  ( topGen `  ( fi `  ( A  u.  B ) ) )
118 2basgen 19998 . . 3  |-  ( ( ( fi `  ( A  u.  B )
)  C_  ( fi `  ( { RR* }  u.  ( A  u.  B
) ) )  /\  ( fi `  ( {
RR* }  u.  ( A  u.  B )
) )  C_  ( topGen `
 ( fi `  ( A  u.  B
) ) ) )  ->  ( topGen `  ( fi `  ( A  u.  B ) ) )  =  ( topGen `  ( fi `  ( { RR* }  u.  ( A  u.  B ) ) ) ) )
11935, 117, 118mp2an 677 . 2  |-  ( topGen `  ( fi `  ( A  u.  B )
) )  =  (
topGen `  ( fi `  ( { RR* }  u.  ( A  u.  B
) ) ) )
1208, 119eqtr4i 2455 1  |-  (ordTop `  <_  )  =  ( topGen `  ( fi `  ( A  u.  B )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    /\ w3a 983    = wceq 1438    e. wcel 1869   E.wrex 2777   _Vcvv 3082    u. cun 3435    C_ wss 3437   ~Pcpw 3980   {csn 3997   {cpr 3999   U.cuni 4217   class class class wbr 4421    |-> cmpt 4480   ran crn 4852   -->wf 5595   ` cfv 5599  (class class class)co 6303   ficfi 7928   0cc0 9541   1c1 9542   +oocpnf 9674   -oocmnf 9675   RR*cxr 9676    < clt 9677    <_ cle 9678   (,]cioc 11638   [,)cico 11639   [,]cicc 11640   topGenctg 15329  ordTopcordt 15390    TosetRel ctsr 16438   Topctop 19909   TopBasesctb 19912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-om 6705  df-1st 6805  df-2nd 6806  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-oadd 7192  df-er 7369  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fi 7929  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-ioc 11642  df-ico 11643  df-icc 11644  df-topgen 15335  df-ordt 15392  df-ps 16439  df-tsr 16440  df-top 19913  df-bases 19914
This theorem is referenced by:  leordtval  20221  lecldbas  20227
  Copyright terms: Public domain W3C validator