MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leordtval Structured version   Unicode version

Theorem leordtval 20160
Description: The topology of the extended reals. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypotheses
Ref Expression
leordtval.1  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )
leordtval.2  |-  B  =  ran  ( x  e. 
RR*  |->  ( -oo [,) x ) )
leordtval.3  |-  C  =  ran  (,)
Assertion
Ref Expression
leordtval  |-  (ordTop `  <_  )  =  ( topGen `  ( ( A  u.  B )  u.  C
) )

Proof of Theorem leordtval
Dummy variables  a 
b  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 leordtval.1 . . 3  |-  A  =  ran  ( x  e. 
RR*  |->  ( x (,] +oo ) )
2 leordtval.2 . . 3  |-  B  =  ran  ( x  e. 
RR*  |->  ( -oo [,) x ) )
31, 2leordtval2 20159 . 2  |-  (ordTop `  <_  )  =  ( topGen `  ( fi `  ( A  u.  B )
) )
4 letsr 16424 . . . 4  |-  <_  e.  TosetRel
5 ledm 16421 . . . . 5  |-  RR*  =  dom  <_
61leordtvallem1 20157 . . . . 5  |-  A  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  y  <_  x } )
71, 2leordtvallem2 20158 . . . . 5  |-  B  =  ran  ( x  e. 
RR*  |->  { y  e. 
RR*  |  -.  x  <_  y } )
8 leordtval.3 . . . . . 6  |-  C  =  ran  (,)
9 df-ioo 11639 . . . . . . . 8  |-  (,)  =  ( a  e.  RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  (
a  <  y  /\  y  <  b ) } )
10 xrltnle 9700 . . . . . . . . . . . 12  |-  ( ( a  e.  RR*  /\  y  e.  RR* )  ->  (
a  <  y  <->  -.  y  <_  a ) )
1110adantlr 719 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  y  e.  RR* )  ->  ( a  <  y  <->  -.  y  <_  a )
)
12 xrltnle 9700 . . . . . . . . . . . . 13  |-  ( ( y  e.  RR*  /\  b  e.  RR* )  ->  (
y  <  b  <->  -.  b  <_  y ) )
1312ancoms 454 . . . . . . . . . . . 12  |-  ( ( b  e.  RR*  /\  y  e.  RR* )  ->  (
y  <  b  <->  -.  b  <_  y ) )
1413adantll 718 . . . . . . . . . . 11  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  y  e.  RR* )  ->  ( y  <  b  <->  -.  b  <_  y )
)
1511, 14anbi12d 715 . . . . . . . . . 10  |-  ( ( ( a  e.  RR*  /\  b  e.  RR* )  /\  y  e.  RR* )  ->  ( ( a  < 
y  /\  y  <  b )  <->  ( -.  y  <_  a  /\  -.  b  <_  y ) ) )
1615rabbidva 3078 . . . . . . . . 9  |-  ( ( a  e.  RR*  /\  b  e.  RR* )  ->  { y  e.  RR*  |  (
a  <  y  /\  y  <  b ) }  =  { y  e. 
RR*  |  ( -.  y  <_  a  /\  -.  b  <_  y ) } )
1716mpt2eq3ia 6370 . . . . . . . 8  |-  ( a  e.  RR* ,  b  e. 
RR*  |->  { y  e. 
RR*  |  ( a  <  y  /\  y  < 
b ) } )  =  ( a  e. 
RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  ( -.  y  <_ 
a  /\  -.  b  <_  y ) } )
189, 17eqtri 2458 . . . . . . 7  |-  (,)  =  ( a  e.  RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  ( -.  y  <_  a  /\  -.  b  <_  y ) } )
1918rneqi 5081 . . . . . 6  |-  ran  (,)  =  ran  ( a  e. 
RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  ( -.  y  <_ 
a  /\  -.  b  <_  y ) } )
208, 19eqtri 2458 . . . . 5  |-  C  =  ran  ( a  e. 
RR* ,  b  e.  RR*  |->  { y  e.  RR*  |  ( -.  y  <_ 
a  /\  -.  b  <_  y ) } )
215, 6, 7, 20ordtbas2 20138 . . . 4  |-  (  <_  e. 
TosetRel  ->  ( fi `  ( A  u.  B
) )  =  ( ( A  u.  B
)  u.  C ) )
224, 21ax-mp 5 . . 3  |-  ( fi
`  ( A  u.  B ) )  =  ( ( A  u.  B )  u.  C
)
2322fveq2i 5884 . 2  |-  ( topGen `  ( fi `  ( A  u.  B )
) )  =  (
topGen `  ( ( A  u.  B )  u.  C ) )
243, 23eqtri 2458 1  |-  (ordTop `  <_  )  =  ( topGen `  ( ( A  u.  B )  u.  C
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1870   {crab 2786    u. cun 3440   class class class wbr 4426    |-> cmpt 4484   ran crn 4855   ` cfv 5601  (class class class)co 6305    |-> cmpt2 6307   ficfi 7930   +oocpnf 9671   -oocmnf 9672   RR*cxr 9673    < clt 9674    <_ cle 9675   (,)cioo 11635   (,]cioc 11636   [,)cico 11637   topGenctg 15295  ordTopcordt 15356    TosetRel ctsr 16396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-cnex 9594  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-addrcl 9599  ax-mulcl 9600  ax-mulrcl 9601  ax-mulcom 9602  ax-addass 9603  ax-mulass 9604  ax-distr 9605  ax-i2m1 9606  ax-1ne0 9607  ax-1rid 9608  ax-rnegex 9609  ax-rrecex 9610  ax-cnre 9611  ax-pre-lttri 9612  ax-pre-lttrn 9613  ax-pre-ltadd 9614  ax-pre-mulgt0 9615
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-int 4259  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-riota 6267  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-om 6707  df-1st 6807  df-2nd 6808  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-1o 7190  df-oadd 7194  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-fin 7581  df-fi 7931  df-pnf 9676  df-mnf 9677  df-xr 9678  df-ltxr 9679  df-le 9680  df-sub 9861  df-neg 9862  df-ioo 11639  df-ioc 11640  df-ico 11641  df-icc 11642  df-topgen 15301  df-ordt 15358  df-ps 16397  df-tsr 16398  df-top 19852  df-bases 19853
This theorem is referenced by:  iocpnfordt  20162  icomnfordt  20163  iooordt  20164  pnfnei  20167  mnfnei  20168  xrtgioo  21735
  Copyright terms: Public domain W3C validator