MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul2 Structured version   Unicode version

Theorem lemul2 10174
Description: Multiplication of both sides of 'less than or equal to' by a positive number. (Contributed by NM, 16-Mar-2005.)
Assertion
Ref Expression
lemul2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )

Proof of Theorem lemul2
StepHypRef Expression
1 lemul1 10173 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( A  x.  C )  <_  ( B  x.  C ) ) )
2 recn 9364 . . . . . 6  |-  ( A  e.  RR  ->  A  e.  CC )
3 recn 9364 . . . . . 6  |-  ( C  e.  RR  ->  C  e.  CC )
4 mulcom 9360 . . . . . 6  |-  ( ( A  e.  CC  /\  C  e.  CC )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
52, 3, 4syl2an 477 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  =  ( C  x.  A ) )
653adant2 1007 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C )  =  ( C  x.  A ) )
7 recn 9364 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
8 mulcom 9360 . . . . . 6  |-  ( ( B  e.  CC  /\  C  e.  CC )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
97, 3, 8syl2an 477 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C
)  =  ( C  x.  B ) )
1093adant1 1006 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  ( B  x.  C )  =  ( C  x.  B ) )
116, 10breq12d 4298 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  C  e.  RR )  ->  (
( A  x.  C
)  <_  ( B  x.  C )  <->  ( C  x.  A )  <_  ( C  x.  B )
) )
12113adant3r 1215 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  x.  C )  <_  ( B  x.  C )  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
131, 12bitrd 253 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  B  <->  ( C  x.  A )  <_  ( C  x.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   class class class wbr 4285  (class class class)co 6086   CCcc 9272   RRcr 9273   0cc0 9274    x. cmul 9279    < clt 9410    <_ cle 9411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2418  ax-sep 4406  ax-nul 4414  ax-pow 4463  ax-pr 4524  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350  ax-pre-mulgt0 9351
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2424  df-cleq 2430  df-clel 2433  df-nfc 2562  df-ne 2602  df-nel 2603  df-ral 2714  df-rex 2715  df-reu 2716  df-rab 2718  df-v 2968  df-sbc 3180  df-csb 3282  df-dif 3324  df-un 3326  df-in 3328  df-ss 3335  df-nul 3631  df-if 3785  df-pw 3855  df-sn 3871  df-pr 3873  df-op 3877  df-uni 4085  df-br 4286  df-opab 4344  df-mpt 4345  df-id 4628  df-po 4633  df-so 4634  df-xp 4838  df-rel 4839  df-cnv 4840  df-co 4841  df-dm 4842  df-rn 4843  df-res 4844  df-ima 4845  df-iota 5374  df-fun 5413  df-fn 5414  df-f 5415  df-f1 5416  df-fo 5417  df-f1o 5418  df-fv 5419  df-riota 6045  df-ov 6089  df-oprab 6090  df-mpt2 6091  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416  df-sub 9589  df-neg 9590
This theorem is referenced by:  lediv2  10214  lemul2i  10248  lemul2d  11059  nnlesq  11961  sqrlem6  12729  sqrlem7  12730  climcndslem2  13305  climcnds  13306  qexpz  13955  vdwlem3  14036  vdwlem9  14042  iihalf2  20474  tchcphlem1  20719  csbren  20867  trirn  20868  minveclem2  20882  itg2monolem1  21197  itg2monolem3  21199  itgabs  21281  abelthlem2  21866  pilem2  21886  logdivlti  22038  atans2  22295  leibpi  22306  log2tlbnd  22309  jensenlem2  22350  basellem1  22387  basellem2  22388  basellem3  22389  chtub  22520  logfaclbnd  22530  bpos1lem  22590  bposlem2  22593  bposlem3  22594  bposlem4  22595  bposlem5  22596  bposlem6  22597  lgsquadlem1  22662  chebbnd1lem1  22687  chebbnd1lem3  22689  dchrisumlem1  22707  dchrisum0lem3  22737  mulog2sumlem1  22752  mulog2sumlem2  22753  chpdifbndlem1  22771  pntlemj  22821  pntlemo  22825  ostth2lem2  22852  ostth2lem3  22853  ostth3  22856  minvecolem2  24221  cdj3lem1  25783  zetacvg  26949  subfaclim  27024  itgabsnc  28404  fzmul  28579  bfp  28666  irrapxlem1  29106  irrapxlem3  29108  pellfundex  29170  jm2.17b  29247  jm2.17c  29248  stoweidlem11  29749  stoweidlem26  29764  stoweidlem38  29776
  Copyright terms: Public domain W3C validator