MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul1ad Structured version   Unicode version

Theorem lemul1ad 10474
Description: Multiplication of both sides of 'less than or equal to' by a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
ltp1d.1  |-  ( ph  ->  A  e.  RR )
divgt0d.2  |-  ( ph  ->  B  e.  RR )
lemul1ad.3  |-  ( ph  ->  C  e.  RR )
lemul1ad.4  |-  ( ph  ->  0  <_  C )
lemul1ad.5  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
lemul1ad  |-  ( ph  ->  ( A  x.  C
)  <_  ( B  x.  C ) )

Proof of Theorem lemul1ad
StepHypRef Expression
1 ltp1d.1 . 2  |-  ( ph  ->  A  e.  RR )
2 divgt0d.2 . 2  |-  ( ph  ->  B  e.  RR )
3 lemul1ad.3 . . 3  |-  ( ph  ->  C  e.  RR )
4 lemul1ad.4 . . 3  |-  ( ph  ->  0  <_  C )
53, 4jca 532 . 2  |-  ( ph  ->  ( C  e.  RR  /\  0  <_  C )
)
6 lemul1ad.5 . 2  |-  ( ph  ->  A  <_  B )
7 lemul1a 10385 . 2  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <_  C )
)  /\  A  <_  B )  ->  ( A  x.  C )  <_  ( B  x.  C )
)
81, 2, 5, 6, 7syl31anc 1226 1  |-  ( ph  ->  ( A  x.  C
)  <_  ( B  x.  C ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1762   class class class wbr 4440  (class class class)co 6275   RRcr 9480   0cc0 9481    x. cmul 9486    <_ cle 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-po 4793  df-so 4794  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797
This theorem is referenced by:  bernneq  12247  o1fsum  13576  cvgrat  13644  prmreclem3  14284  nlmvscnlem2  20922  nghmcn  20980  ipcnlem2  21412  dvlip  22122  dvlipcn  22123  dvfsumlem4  22158  dvfsum2  22163  aalioulem3  22457  radcnvlem1  22535  radcnvlem2  22536  abelthlem5  22557  abelthlem7  22560  logtayllem  22761  abscxpbnd  22848  efrlim  23020  chpub  23216  2sqlem8  23368  rplogsumlem1  23390  rpvmasumlem  23393  dchrisumlem3  23397  dchrvmasumlem3  23405  mulog2sumlem2  23441  selberglem2  23452  selberg2lem  23456  pntrlog2bndlem3  23485  pntrlog2bndlem5  23487  pntlemj  23509  ostth2lem2  23540  axpaschlem  23912  smcnlem  25269  htthlem  25496  lnconi  26614  cnlnadjlem7  26654  nexple  27631  lgamgulmlem5  28201  bfplem2  29909  jm2.24nn  30488  areaquad  30778  fmul01lt1lem2  31090  dvbdfbdioolem1  31213  fourierdlem19  31381  fourierdlem39  31401
  Copyright terms: Public domain W3C validator