MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lemul12b Structured version   Unicode version

Theorem lemul12b 10398
Description: Comparison of product of two nonnegative numbers. (Contributed by NM, 22-Feb-2008.)
Assertion
Ref Expression
lemul12b  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )

Proof of Theorem lemul12b
StepHypRef Expression
1 lemul2a 10396 . . . . . . . . 9  |-  ( ( ( C  e.  RR  /\  D  e.  RR  /\  ( A  e.  RR  /\  0  <_  A )
)  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( A  x.  D )
)
21ex 434 . . . . . . . 8  |-  ( ( C  e.  RR  /\  D  e.  RR  /\  ( A  e.  RR  /\  0  <_  A ) )  -> 
( C  <_  D  ->  ( A  x.  C
)  <_  ( A  x.  D ) ) )
323comr 1204 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  C  e.  RR  /\  D  e.  RR )  ->  ( C  <_  D  ->  ( A  x.  C )  <_  ( A  x.  D )
) )
433expb 1197 . . . . . 6  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( C  e.  RR  /\  D  e.  RR ) )  ->  ( C  <_  D  ->  ( A  x.  C )  <_  ( A  x.  D )
) )
54adantrrr 724 . . . . 5  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D )
) )  ->  ( C  <_  D  ->  ( A  x.  C )  <_  ( A  x.  D
) ) )
65adantlr 714 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( C  <_  D  ->  ( A  x.  C )  <_  ( A  x.  D )
) )
7 lemul1a 10395 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  ( D  e.  RR  /\  0  <_  D )
)  /\  A  <_  B )  ->  ( A  x.  D )  <_  ( B  x.  D )
)
87ex 434 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) )  -> 
( A  <_  B  ->  ( A  x.  D
)  <_  ( B  x.  D ) ) )
983expa 1196 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( D  e.  RR  /\  0  <_  D ) )  -> 
( A  <_  B  ->  ( A  x.  D
)  <_  ( B  x.  D ) ) )
109adantllr 718 . . . . 5  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( D  e.  RR  /\  0  <_  D ) )  -> 
( A  <_  B  ->  ( A  x.  D
)  <_  ( B  x.  D ) ) )
1110adantrl 715 . . . 4  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( A  <_  B  ->  ( A  x.  D )  <_  ( B  x.  D )
) )
126, 11anim12d 563 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( C  <_  D  /\  A  <_  B )  ->  (
( A  x.  C
)  <_  ( A  x.  D )  /\  ( A  x.  D )  <_  ( B  x.  D
) ) ) )
1312ancomsd 454 . 2  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( A  <_  B  /\  C  <_  D )  ->  (
( A  x.  C
)  <_  ( A  x.  D )  /\  ( A  x.  D )  <_  ( B  x.  D
) ) ) )
14 remulcl 9576 . . . . 5  |-  ( ( A  e.  RR  /\  C  e.  RR )  ->  ( A  x.  C
)  e.  RR )
1514adantlr 714 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  C  e.  RR )  ->  ( A  x.  C )  e.  RR )
1615ad2ant2r 746 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( A  x.  C )  e.  RR )
17 remulcl 9576 . . . . 5  |-  ( ( A  e.  RR  /\  D  e.  RR )  ->  ( A  x.  D
)  e.  RR )
1817ad2ant2r 746 . . . 4  |-  ( ( ( A  e.  RR  /\  0  <_  A )  /\  ( D  e.  RR  /\  0  <_  D )
)  ->  ( A  x.  D )  e.  RR )
1918ad2ant2rl 748 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( A  x.  D )  e.  RR )
20 remulcl 9576 . . . . 5  |-  ( ( B  e.  RR  /\  D  e.  RR )  ->  ( B  x.  D
)  e.  RR )
2120adantrr 716 . . . 4  |-  ( ( B  e.  RR  /\  ( D  e.  RR  /\  0  <_  D )
)  ->  ( B  x.  D )  e.  RR )
2221ad2ant2l 745 . . 3  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( B  x.  D )  e.  RR )
23 letr 9677 . . 3  |-  ( ( ( A  x.  C
)  e.  RR  /\  ( A  x.  D
)  e.  RR  /\  ( B  x.  D
)  e.  RR )  ->  ( ( ( A  x.  C )  <_  ( A  x.  D )  /\  ( A  x.  D )  <_  ( B  x.  D
) )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )
2416, 19, 22, 23syl3anc 1228 . 2  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( ( A  x.  C )  <_  ( A  x.  D )  /\  ( A  x.  D )  <_  ( B  x.  D
) )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )
2513, 24syld 44 1  |-  ( ( ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR )  /\  ( C  e.  RR  /\  ( D  e.  RR  /\  0  <_  D ) ) )  ->  ( ( A  <_  B  /\  C  <_  D )  ->  ( A  x.  C )  <_  ( B  x.  D
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    e. wcel 1767   class class class wbr 4447  (class class class)co 6283   RRcr 9490   0cc0 9491    x. cmul 9496    <_ cle 9628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6575  ax-resscn 9548  ax-1cn 9549  ax-icn 9550  ax-addcl 9551  ax-addrcl 9552  ax-mulcl 9553  ax-mulrcl 9554  ax-mulcom 9555  ax-addass 9556  ax-mulass 9557  ax-distr 9558  ax-i2m1 9559  ax-1ne0 9560  ax-1rid 9561  ax-rnegex 9562  ax-rrecex 9563  ax-cnre 9564  ax-pre-lttri 9565  ax-pre-lttrn 9566  ax-pre-ltadd 9567  ax-pre-mulgt0 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-po 4800  df-so 4801  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5550  df-fun 5589  df-fn 5590  df-f 5591  df-f1 5592  df-fo 5593  df-f1o 5594  df-fv 5595  df-riota 6244  df-ov 6286  df-oprab 6287  df-mpt2 6288  df-er 7311  df-en 7517  df-dom 7518  df-sdom 7519  df-pnf 9629  df-mnf 9630  df-xr 9631  df-ltxr 9632  df-le 9633  df-sub 9806  df-neg 9807
This theorem is referenced by:  lemul12a  10399  lemul12bd  10488  lo1mul  13412  pntibndlem2  23520
  Copyright terms: Public domain W3C validator