MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lelttric Structured version   Unicode version

Theorem lelttric 9480
Description: Trichotomy law. (Contributed by NM, 4-Apr-2005.)
Assertion
Ref Expression
lelttric  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  \/  B  <  A ) )

Proof of Theorem lelttric
StepHypRef Expression
1 pm2.1 417 . 2  |-  ( -.  B  <  A  \/  B  <  A )
2 lenlt 9452 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  <->  -.  B  <  A ) )
32orbi1d 702 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( ( A  <_  B  \/  B  <  A )  <->  ( -.  B  <  A  \/  B  < 
A ) ) )
41, 3mpbiri 233 1  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  \/  B  <  A ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 368    /\ wa 369    e. wcel 1756   class class class wbr 4291   RRcr 9280    < clt 9417    <_ cle 9418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pr 4530
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-sn 3877  df-pr 3879  df-op 3883  df-br 4292  df-opab 4350  df-xp 4845  df-cnv 4847  df-xr 9421  df-le 9423
This theorem is referenced by:  ltlecasei  9481  fzsplit2  11473  uzsplit  11529  fzospliti  11580  fzouzsplit  11583  discr1  11999  faclbnd  12065  faclbnd4lem1  12068  faclbnd4lem4  12071  dvdslelem  13576  icccmplem2  20399  icccmp  20401  bcmono  22615  bpos1lem  22620  bposlem3  22624  bpos  22631  fzsplit3  26077  lzunuz  29104  jm2.24  29304
  Copyright terms: Public domain W3C validator