MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leiso Structured version   Visualization version   Unicode version

Theorem leiso 12622
Description: Two ways to write a strictly increasing function on the reals. (Contributed by Mario Carneiro, 9-Sep-2015.)
Assertion
Ref Expression
leiso  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  <  ,  <  ( A ,  B )  <-> 
F  Isom  <_  ,  <_  ( A ,  B ) ) )

Proof of Theorem leiso
StepHypRef Expression
1 df-le 9681 . . . . . . 7  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
21ineq1i 3630 . . . . . 6  |-  (  <_  i^i  ( A  X.  A
) )  =  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( A  X.  A
) )
3 indif1 3687 . . . . . 6  |-  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( A  X.  A
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  \  `'  <  )
42, 3eqtri 2473 . . . . 5  |-  (  <_  i^i  ( A  X.  A
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  \  `'  <  )
5 xpss12 4940 . . . . . . . 8  |-  ( ( A  C_  RR*  /\  A  C_ 
RR* )  ->  ( A  X.  A )  C_  ( RR*  X.  RR* )
)
65anidms 651 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( A  X.  A )  C_  ( RR*  X.  RR* ) )
7 dfss1 3637 . . . . . . 7  |-  ( ( A  X.  A ) 
C_  ( RR*  X.  RR* ) 
<->  ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  =  ( A  X.  A
) )
86, 7sylib 200 . . . . . 6  |-  ( A 
C_  RR*  ->  ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  =  ( A  X.  A ) )
98difeq1d 3550 . . . . 5  |-  ( A 
C_  RR*  ->  ( (
( RR*  X.  RR* )  i^i  ( A  X.  A
) )  \  `'  <  )  =  ( ( A  X.  A ) 
\  `'  <  )
)
104, 9syl5req 2498 . . . 4  |-  ( A 
C_  RR*  ->  ( ( A  X.  A )  \  `'  <  )  =  (  <_  i^i  ( A  X.  A ) ) )
11 isoeq2 6211 . . . 4  |-  ( ( ( A  X.  A
)  \  `'  <  )  =  (  <_  i^i  ( A  X.  A
) )  ->  ( F  Isom  ( ( A  X.  A )  \  `'  <  ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
)  <->  F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
) ) )
1210, 11syl 17 . . 3  |-  ( A 
C_  RR*  ->  ( F  Isom  ( ( A  X.  A )  \  `'  <  ) ,  ( ( B  X.  B ) 
\  `'  <  )
( A ,  B
)  <->  F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
) ) )
131ineq1i 3630 . . . . . 6  |-  (  <_  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( B  X.  B
) )
14 indif1 3687 . . . . . 6  |-  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  \  `'  <  )
1513, 14eqtri 2473 . . . . 5  |-  (  <_  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  \  `'  <  )
16 xpss12 4940 . . . . . . . 8  |-  ( ( B  C_  RR*  /\  B  C_ 
RR* )  ->  ( B  X.  B )  C_  ( RR*  X.  RR* )
)
1716anidms 651 . . . . . . 7  |-  ( B 
C_  RR*  ->  ( B  X.  B )  C_  ( RR*  X.  RR* ) )
18 dfss1 3637 . . . . . . 7  |-  ( ( B  X.  B ) 
C_  ( RR*  X.  RR* ) 
<->  ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  =  ( B  X.  B
) )
1917, 18sylib 200 . . . . . 6  |-  ( B 
C_  RR*  ->  ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  =  ( B  X.  B ) )
2019difeq1d 3550 . . . . 5  |-  ( B 
C_  RR*  ->  ( (
( RR*  X.  RR* )  i^i  ( B  X.  B
) )  \  `'  <  )  =  ( ( B  X.  B ) 
\  `'  <  )
)
2115, 20syl5req 2498 . . . 4  |-  ( B 
C_  RR*  ->  ( ( B  X.  B )  \  `'  <  )  =  (  <_  i^i  ( B  X.  B ) ) )
22 isoeq3 6212 . . . 4  |-  ( ( ( B  X.  B
)  \  `'  <  )  =  (  <_  i^i  ( B  X.  B
) )  ->  ( F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
)  <->  F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B ) ) )
2321, 22syl 17 . . 3  |-  ( B 
C_  RR*  ->  ( F  Isom  (  <_  i^i  ( A  X.  A ) ) ,  ( ( B  X.  B )  \  `'  <  ) ( A ,  B )  <->  F  Isom  (  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) ) )
2412, 23sylan9bb 706 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  ( ( A  X.  A )  \  `'  <  ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
)  <->  F  Isom  (  <_  i^i  ( A  X.  A
) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B ) ) )
25 isocnv2 6222 . . 3  |-  ( F 
Isom  <  ,  <  ( A ,  B )  <->  F 
Isom  `'  <  ,  `'  <  ( A ,  B
) )
26 eqid 2451 . . . 4  |-  ( ( A  X.  A ) 
\  `'  <  )  =  ( ( A  X.  A )  \  `'  <  )
27 eqid 2451 . . . 4  |-  ( ( B  X.  B ) 
\  `'  <  )  =  ( ( B  X.  B )  \  `'  <  )
2826, 27isocnv3 6223 . . 3  |-  ( F 
Isom  `'  <  ,  `'  <  ( A ,  B
)  <->  F  Isom  ( ( A  X.  A ) 
\  `'  <  ) ,  ( ( B  X.  B )  \  `'  <  ) ( A ,  B ) )
2925, 28bitri 253 . 2  |-  ( F 
Isom  <  ,  <  ( A ,  B )  <->  F 
Isom  ( ( A  X.  A )  \  `'  <  ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
) )
30 isores1 6225 . . 3  |-  ( F 
Isom  <_  ,  <_  ( A ,  B )  <->  F 
Isom  (  <_  i^i  ( A  X.  A ) ) ,  <_  ( A ,  B ) )
31 isores2 6224 . . 3  |-  ( F 
Isom  (  <_  i^i  ( A  X.  A ) ) ,  <_  ( A ,  B )  <->  F  Isom  (  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) )
3230, 31bitri 253 . 2  |-  ( F 
Isom  <_  ,  <_  ( A ,  B )  <->  F 
Isom  (  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B
) ) ( A ,  B ) )
3324, 29, 323bitr4g 292 1  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  <  ,  <  ( A ,  B )  <-> 
F  Isom  <_  ,  <_  ( A ,  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    \ cdif 3401    i^i cin 3403    C_ wss 3404    X. cxp 4832   `'ccnv 4833    Isom wiso 5583   RR*cxr 9674    < clt 9675    <_ cle 9676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 987  df-tru 1447  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3047  df-sbc 3268  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-nul 3732  df-if 3882  df-sn 3969  df-pr 3971  df-op 3975  df-uni 4199  df-br 4403  df-opab 4462  df-id 4749  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-le 9681
This theorem is referenced by:  leisorel  12623  icopnfhmeo  21971  iccpnfhmeo  21973  xrhmeo  21974
  Copyright terms: Public domain W3C validator