MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leibpilem1 Structured version   Unicode version

Theorem leibpilem1 23596
Description: Lemma for leibpi 23598. (Contributed by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
leibpilem1  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  e.  NN  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)

Proof of Theorem leibpilem1
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 elnn0 10838 . . . . . . 7  |-  ( N  e.  NN0  <->  ( N  e.  NN  \/  N  =  0 ) )
21biimpi 194 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  e.  NN  \/  N  =  0 ) )
32ord 375 . . . . 5  |-  ( N  e.  NN0  ->  ( -.  N  e.  NN  ->  N  =  0 ) )
43con1d 124 . . . 4  |-  ( N  e.  NN0  ->  ( -.  N  =  0  ->  N  e.  NN )
)
54imp 427 . . 3  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  N  e.  NN )
65adantrr 715 . 2  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  ->  N  e.  NN )
7 nn0z 10928 . . . . . . 7  |-  ( N  e.  NN0  ->  N  e.  ZZ )
87adantr 463 . . . . . 6  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  N  e.  ZZ )
9 odd2np1 14255 . . . . . 6  |-  ( N  e.  ZZ  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
108, 9syl 17 . . . . 5  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  ( -.  2  ||  N  <->  E. n  e.  ZZ  ( ( 2  x.  n )  +  1 )  =  N ) )
11 zcn 10910 . . . . . . . . 9  |-  ( n  e.  ZZ  ->  n  e.  CC )
12 2cn 10647 . . . . . . . . . . . . 13  |-  2  e.  CC
13 mulcl 9606 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  n  e.  CC )  ->  ( 2  x.  n
)  e.  CC )
1412, 13mpan 668 . . . . . . . . . . . 12  |-  ( n  e.  CC  ->  (
2  x.  n )  e.  CC )
15 ax-1cn 9580 . . . . . . . . . . . 12  |-  1  e.  CC
16 pncan 9862 . . . . . . . . . . . 12  |-  ( ( ( 2  x.  n
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
1714, 15, 16sylancl 660 . . . . . . . . . . 11  |-  ( n  e.  CC  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( 2  x.  n ) )
1817oveq1d 6293 . . . . . . . . . 10  |-  ( n  e.  CC  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( 2  x.  n )  / 
2 ) )
19 2ne0 10669 . . . . . . . . . . 11  |-  2  =/=  0
20 divcan3 10272 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  n
)  /  2 )  =  n )
2112, 19, 20mp3an23 1318 . . . . . . . . . 10  |-  ( n  e.  CC  ->  (
( 2  x.  n
)  /  2 )  =  n )
2218, 21eqtrd 2443 . . . . . . . . 9  |-  ( n  e.  CC  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  n )
2311, 22syl 17 . . . . . . . 8  |-  ( n  e.  ZZ  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  n )
24 id 22 . . . . . . . 8  |-  ( n  e.  ZZ  ->  n  e.  ZZ )
2523, 24eqeltrd 2490 . . . . . . 7  |-  ( n  e.  ZZ  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  e.  ZZ )
26 oveq1 6285 . . . . . . . . 9  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( 2  x.  n )  +  1 )  -  1 )  =  ( N  - 
1 ) )
2726oveq1d 6293 . . . . . . . 8  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( 2  x.  n )  +  1 )  -  1 )  /  2 )  =  ( ( N  -  1 )  / 
2 ) )
2827eleq1d 2471 . . . . . . 7  |-  ( ( ( 2  x.  n
)  +  1 )  =  N  ->  (
( ( ( ( 2  x.  n )  +  1 )  - 
1 )  /  2
)  e.  ZZ  <->  ( ( N  -  1 )  /  2 )  e.  ZZ ) )
2925, 28syl5ibcom 220 . . . . . 6  |-  ( n  e.  ZZ  ->  (
( ( 2  x.  n )  +  1 )  =  N  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ ) )
3029rexlimiv 2890 . . . . 5  |-  ( E. n  e.  ZZ  (
( 2  x.  n
)  +  1 )  =  N  ->  (
( N  -  1 )  /  2 )  e.  ZZ )
3110, 30syl6bi 228 . . . 4  |-  ( ( N  e.  NN0  /\  -.  N  =  0
)  ->  ( -.  2  ||  N  ->  (
( N  -  1 )  /  2 )  e.  ZZ ) )
3231impr 617 . . 3  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( ( N  - 
1 )  /  2
)  e.  ZZ )
33 nnm1nn0 10878 . . . . . 6  |-  ( N  e.  NN  ->  ( N  -  1 )  e.  NN0 )
346, 33syl 17 . . . . 5  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  -  1 )  e.  NN0 )
3534nn0red 10894 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  -  1 )  e.  RR )
3634nn0ge0d 10896 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <_  ( N  -  1 ) )
37 2re 10646 . . . . 5  |-  2  e.  RR
3837a1i 11 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
2  e.  RR )
39 2pos 10668 . . . . 5  |-  0  <  2
4039a1i 11 . . . 4  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <  2 )
41 divge0 10452 . . . 4  |-  ( ( ( ( N  - 
1 )  e.  RR  /\  0  <_  ( N  -  1 ) )  /\  ( 2  e.  RR  /\  0  <  2 ) )  -> 
0  <_  ( ( N  -  1 )  /  2 ) )
4235, 36, 38, 40, 41syl22anc 1231 . . 3  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
0  <_  ( ( N  -  1 )  /  2 ) )
43 elnn0z 10918 . . 3  |-  ( ( ( N  -  1 )  /  2 )  e.  NN0  <->  ( ( ( N  -  1 )  /  2 )  e.  ZZ  /\  0  <_ 
( ( N  - 
1 )  /  2
) ) )
4432, 42, 43sylanbrc 662 . 2  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( ( N  - 
1 )  /  2
)  e.  NN0 )
456, 44jca 530 1  |-  ( ( N  e.  NN0  /\  ( -.  N  = 
0  /\  -.  2  ||  N ) )  -> 
( N  e.  NN  /\  ( ( N  - 
1 )  /  2
)  e.  NN0 )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    = wceq 1405    e. wcel 1842    =/= wne 2598   E.wrex 2755   class class class wbr 4395  (class class class)co 6278   CCcc 9520   RRcr 9521   0cc0 9522   1c1 9523    + caddc 9525    x. cmul 9527    < clt 9658    <_ cle 9659    - cmin 9841    / cdiv 10247   NNcn 10576   2c2 10626   NN0cn0 10836   ZZcz 10905    || cdvds 14195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-div 10248  df-nn 10577  df-2 10635  df-n0 10837  df-z 10906  df-dvds 14196
This theorem is referenced by:  leibpilem2  23597  leibpi  23598
  Copyright terms: Public domain W3C validator