MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  legov Structured version   Unicode version

Theorem legov 24617
Description: Value of the less-than relationship. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Thierry Arnoux, 21-Jun-2019.)
Hypotheses
Ref Expression
legval.p  |-  P  =  ( Base `  G
)
legval.d  |-  .-  =  ( dist `  G )
legval.i  |-  I  =  (Itv `  G )
legval.l  |-  .<_  =  (≤G `  G )
legval.g  |-  ( ph  ->  G  e. TarskiG )
legov.a  |-  ( ph  ->  A  e.  P )
legov.b  |-  ( ph  ->  B  e.  P )
legov.c  |-  ( ph  ->  C  e.  P )
legov.d  |-  ( ph  ->  D  e.  P )
Assertion
Ref Expression
legov  |-  ( ph  ->  ( ( A  .-  B )  .<_  ( C 
.-  D )  <->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) ) )
Distinct variable groups:    z,  .-    z, A    z, B    z, C    z, D    z, I    z, P    z, G    ph, z
Allowed substitution hint:    .<_ ( z)

Proof of Theorem legov
Dummy variables  c 
d  e  f  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 legval.p . . . . 5  |-  P  =  ( Base `  G
)
2 legval.d . . . . 5  |-  .-  =  ( dist `  G )
3 legval.i . . . . 5  |-  I  =  (Itv `  G )
4 legval.l . . . . 5  |-  .<_  =  (≤G `  G )
5 legval.g . . . . 5  |-  ( ph  ->  G  e. TarskiG )
61, 2, 3, 4, 5legval 24616 . . . 4  |-  ( ph  -> 
.<_  =  { <. e ,  f >.  |  E. x  e.  P  E. y  e.  P  (
f  =  ( x 
.-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  e  =  ( x  .-  z ) ) ) } )
76breqd 4431 . . 3  |-  ( ph  ->  ( ( A  .-  B )  .<_  ( C 
.-  D )  <->  ( A  .-  B ) { <. e ,  f >.  |  E. x  e.  P  E. y  e.  P  (
f  =  ( x 
.-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  e  =  ( x  .-  z ) ) ) }  ( C  .-  D ) ) )
8 ovex 6330 . . . 4  |-  ( A 
.-  B )  e. 
_V
9 ovex 6330 . . . 4  |-  ( C 
.-  D )  e. 
_V
10 simpr 462 . . . . . . 7  |-  ( ( e  =  ( A 
.-  B )  /\  f  =  ( C  .-  D ) )  -> 
f  =  ( C 
.-  D ) )
1110eqeq1d 2424 . . . . . 6  |-  ( ( e  =  ( A 
.-  B )  /\  f  =  ( C  .-  D ) )  -> 
( f  =  ( x  .-  y )  <-> 
( C  .-  D
)  =  ( x 
.-  y ) ) )
12 simpl 458 . . . . . . . . 9  |-  ( ( e  =  ( A 
.-  B )  /\  f  =  ( C  .-  D ) )  -> 
e  =  ( A 
.-  B ) )
1312eqeq1d 2424 . . . . . . . 8  |-  ( ( e  =  ( A 
.-  B )  /\  f  =  ( C  .-  D ) )  -> 
( e  =  ( x  .-  z )  <-> 
( A  .-  B
)  =  ( x 
.-  z ) ) )
1413anbi2d 708 . . . . . . 7  |-  ( ( e  =  ( A 
.-  B )  /\  f  =  ( C  .-  D ) )  -> 
( ( z  e.  ( x I y )  /\  e  =  ( x  .-  z
) )  <->  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
1514rexbidv 2939 . . . . . 6  |-  ( ( e  =  ( A 
.-  B )  /\  f  =  ( C  .-  D ) )  -> 
( E. z  e.  P  ( z  e.  ( x I y )  /\  e  =  ( x  .-  z
) )  <->  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
1611, 15anbi12d 715 . . . . 5  |-  ( ( e  =  ( A 
.-  B )  /\  f  =  ( C  .-  D ) )  -> 
( ( f  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  e  =  ( x  .-  z
) ) )  <->  ( ( C  .-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) ) )
17162rexbidv 2946 . . . 4  |-  ( ( e  =  ( A 
.-  B )  /\  f  =  ( C  .-  D ) )  -> 
( E. x  e.  P  E. y  e.  P  ( f  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  e  =  ( x  .-  z
) ) )  <->  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) ) )
18 eqid 2422 . . . 4  |-  { <. e ,  f >.  |  E. x  e.  P  E. y  e.  P  (
f  =  ( x 
.-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  e  =  ( x  .-  z ) ) ) }  =  { <. e ,  f >.  |  E. x  e.  P  E. y  e.  P  (
f  =  ( x 
.-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  e  =  ( x  .-  z ) ) ) }
198, 9, 17, 18braba 4734 . . 3  |-  ( ( A  .-  B ) { <. e ,  f
>.  |  E. x  e.  P  E. y  e.  P  ( f  =  ( x  .-  y )  /\  E. z  e.  P  (
z  e.  ( x I y )  /\  e  =  ( x  .-  z ) ) ) }  ( C  .-  D )  <->  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
207, 19syl6bb 264 . 2  |-  ( ph  ->  ( ( A  .-  B )  .<_  ( C 
.-  D )  <->  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) ) )
21 anass 653 . . . . . . . 8  |-  ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P
)  /\  ( C  .-  D )  =  ( c  .-  d ) )  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  z
) ) )  <->  ( (
( ph  /\  c  e.  P )  /\  d  e.  P )  /\  (
( C  .-  D
)  =  ( c 
.-  d )  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) ) ) ) )
2221anbi1i 699 . . . . . . 7  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  E. z  e.  P  (
z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) ) )  /\  x  e.  P
)  <->  ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  (
( C  .-  D
)  =  ( c 
.-  d )  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) ) ) )  /\  x  e.  P ) )
23 eqid 2422 . . . . . . . . . . 11  |-  (cgrG `  G )  =  (cgrG `  G )
245ad5antr 738 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  G  e. TarskiG )
2524adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  G  e. TarskiG )
26 simp-5r 777 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  c  e.  P
)
2726adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  c  e.  P
)
28 simpllr 767 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  x  e.  P
)
29 simp-4r 775 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  d  e.  P
)
3029adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  d  e.  P
)
31 legov.c . . . . . . . . . . . . 13  |-  ( ph  ->  C  e.  P )
3231ad5antr 738 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  C  e.  P
)
3332adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  C  e.  P
)
34 simprl 762 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  z  e.  P
)
35 legov.d . . . . . . . . . . . . 13  |-  ( ph  ->  D  e.  P )
3635ad5antr 738 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  D  e.  P
)
3736adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  D  e.  P
)
38 simprr 764 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  <" c d x "> (cgrG `  G ) <" C D z "> )
391, 2, 3, 23, 25, 27, 30, 28, 33, 37, 34, 38cgr3swap23 24556 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  <" c x d "> (cgrG `  G ) <" C
z D "> )
40 simprl 762 . . . . . . . . . . . 12  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  x  e.  ( c I d ) )
4140adantr 466 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  x  e.  ( c I d ) )
421, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39, 41tgbtwnxfr 24562 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  z  e.  ( C I D ) )
43 simplrr 769 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  ( A  .-  B )  =  ( c  .-  x ) )
441, 2, 3, 23, 25, 27, 28, 30, 33, 34, 37, 39cgr3simp1 24552 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  ( c  .-  x )  =  ( C  .-  z ) )
4543, 44eqtrd 2463 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  ( A  .-  B )  =  ( C  .-  z ) )
4642, 45jca 534 . . . . . . . . 9  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  /\  ( z  e.  P  /\  <" c
d x "> (cgrG `  G ) <" C D z "> ) )  ->  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) )
47 eqid 2422 . . . . . . . . . 10  |-  (LineG `  G )  =  (LineG `  G )
48 simplr 760 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  x  e.  P
)
491, 47, 3, 24, 26, 48, 29, 40btwncolg3 24589 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  ( d  e.  ( c (LineG `  G ) x )  \/  c  =  x ) )
50 simpllr 767 . . . . . . . . . . 11  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  ( C  .-  D )  =  ( c  .-  d ) )
5150eqcomd 2430 . . . . . . . . . 10  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  ( c  .-  d )  =  ( C  .-  D ) )
521, 47, 3, 24, 26, 29, 48, 23, 32, 36, 2, 49, 51lnext 24599 . . . . . . . . 9  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  E. z  e.  P  <" c d x "> (cgrG `  G ) <" C D z "> )
5346, 52reximddv 2901 . . . . . . . 8  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A  .-  B )  =  ( C  .-  z ) ) )
5453adantllr 723 . . . . . . 7  |-  ( ( ( ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P )  /\  ( C  .-  D )  =  ( c  .-  d
) )  /\  E. z  e.  P  (
z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) ) )  /\  x  e.  P
)  /\  ( x  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  x
) ) )  ->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A  .-  B )  =  ( C  .-  z ) ) )
5522, 54sylanbr 475 . . . . . 6  |-  ( ( ( ( ( (
ph  /\  c  e.  P )  /\  d  e.  P )  /\  (
( C  .-  D
)  =  ( c 
.-  d )  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) ) ) )  /\  x  e.  P )  /\  (
x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )  ->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A  .-  B )  =  ( C  .-  z ) ) )
56 simprr 764 . . . . . . 7  |-  ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P
)  /\  ( ( C  .-  D )  =  ( c  .-  d
)  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  z
) ) ) )  ->  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) ) )
57 eleq1 2494 . . . . . . . . 9  |-  ( x  =  z  ->  (
x  e.  ( c I d )  <->  z  e.  ( c I d ) ) )
58 oveq2 6310 . . . . . . . . . 10  |-  ( x  =  z  ->  (
c  .-  x )  =  ( c  .-  z ) )
5958eqeq2d 2436 . . . . . . . . 9  |-  ( x  =  z  ->  (
( A  .-  B
)  =  ( c 
.-  x )  <->  ( A  .-  B )  =  ( c  .-  z ) ) )
6057, 59anbi12d 715 . . . . . . . 8  |-  ( x  =  z  ->  (
( x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) )  <->  ( z  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  z
) ) ) )
6160cbvrexv 3056 . . . . . . 7  |-  ( E. x  e.  P  ( x  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) )  <->  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  z
) ) )
6256, 61sylibr 215 . . . . . 6  |-  ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P
)  /\  ( ( C  .-  D )  =  ( c  .-  d
)  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  z
) ) ) )  ->  E. x  e.  P  ( x  e.  (
c I d )  /\  ( A  .-  B )  =  ( c  .-  x ) ) )
6355, 62r19.29a 2970 . . . . 5  |-  ( ( ( ( ph  /\  c  e.  P )  /\  d  e.  P
)  /\  ( ( C  .-  D )  =  ( c  .-  d
)  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  z
) ) ) )  ->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A  .-  B )  =  ( C  .-  z ) ) )
6463adantl3r 754 . . . 4  |-  ( ( ( ( ( ph  /\ 
E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )  /\  c  e.  P
)  /\  d  e.  P )  /\  (
( C  .-  D
)  =  ( c 
.-  d )  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) ) ) )  ->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) )
65 simpr 462 . . . . 5  |-  ( (
ph  /\  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )  ->  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
66 oveq1 6309 . . . . . . . 8  |-  ( c  =  x  ->  (
c  .-  d )  =  ( x  .-  d ) )
6766eqeq2d 2436 . . . . . . 7  |-  ( c  =  x  ->  (
( C  .-  D
)  =  ( c 
.-  d )  <->  ( C  .-  D )  =  ( x  .-  d ) ) )
68 oveq1 6309 . . . . . . . . . 10  |-  ( c  =  x  ->  (
c I d )  =  ( x I d ) )
6968eleq2d 2492 . . . . . . . . 9  |-  ( c  =  x  ->  (
z  e.  ( c I d )  <->  z  e.  ( x I d ) ) )
70 oveq1 6309 . . . . . . . . . 10  |-  ( c  =  x  ->  (
c  .-  z )  =  ( x  .-  z ) )
7170eqeq2d 2436 . . . . . . . . 9  |-  ( c  =  x  ->  (
( A  .-  B
)  =  ( c 
.-  z )  <->  ( A  .-  B )  =  ( x  .-  z ) ) )
7269, 71anbi12d 715 . . . . . . . 8  |-  ( c  =  x  ->  (
( z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) )  <->  ( z  e.  ( x I d )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
7372rexbidv 2939 . . . . . . 7  |-  ( c  =  x  ->  ( E. z  e.  P  ( z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) )  <->  E. z  e.  P  ( z  e.  ( x I d )  /\  ( A  .-  B )  =  ( x  .-  z ) ) ) )
7467, 73anbi12d 715 . . . . . 6  |-  ( c  =  x  ->  (
( ( C  .-  D )  =  ( c  .-  d )  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  z
) ) )  <->  ( ( C  .-  D )  =  ( x  .-  d
)  /\  E. z  e.  P  ( z  e.  ( x I d )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) ) )
75 oveq2 6310 . . . . . . . 8  |-  ( d  =  y  ->  (
x  .-  d )  =  ( x  .-  y ) )
7675eqeq2d 2436 . . . . . . 7  |-  ( d  =  y  ->  (
( C  .-  D
)  =  ( x 
.-  d )  <->  ( C  .-  D )  =  ( x  .-  y ) ) )
77 oveq2 6310 . . . . . . . . . 10  |-  ( d  =  y  ->  (
x I d )  =  ( x I y ) )
7877eleq2d 2492 . . . . . . . . 9  |-  ( d  =  y  ->  (
z  e.  ( x I d )  <->  z  e.  ( x I y ) ) )
7978anbi1d 709 . . . . . . . 8  |-  ( d  =  y  ->  (
( z  e.  ( x I d )  /\  ( A  .-  B )  =  ( x  .-  z ) )  <->  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
8079rexbidv 2939 . . . . . . 7  |-  ( d  =  y  ->  ( E. z  e.  P  ( z  e.  ( x I d )  /\  ( A  .-  B )  =  ( x  .-  z ) )  <->  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A  .-  B )  =  ( x  .-  z ) ) ) )
8176, 80anbi12d 715 . . . . . 6  |-  ( d  =  y  ->  (
( ( C  .-  D )  =  ( x  .-  d )  /\  E. z  e.  P  ( z  e.  ( x I d )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) )  <->  ( ( C  .-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) ) )
8274, 81cbvrex2v 3064 . . . . 5  |-  ( E. c  e.  P  E. d  e.  P  (
( C  .-  D
)  =  ( c 
.-  d )  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A  .-  B )  =  ( c  .-  z ) ) )  <->  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
8365, 82sylibr 215 . . . 4  |-  ( (
ph  /\  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )  ->  E. c  e.  P  E. d  e.  P  ( ( C  .-  D )  =  ( c  .-  d )  /\  E. z  e.  P  ( z  e.  ( c I d )  /\  ( A 
.-  B )  =  ( c  .-  z
) ) ) )
8464, 83r19.29vva 2972 . . 3  |-  ( (
ph  /\  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )  ->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A  .-  B )  =  ( C  .-  z ) ) )
8531adantr 466 . . . 4  |-  ( (
ph  /\  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) )  ->  C  e.  P )
8635adantr 466 . . . 4  |-  ( (
ph  /\  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) )  ->  D  e.  P )
87 eqidd 2423 . . . 4  |-  ( (
ph  /\  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) )  -> 
( C  .-  D
)  =  ( C 
.-  D ) )
88 simpr 462 . . . 4  |-  ( (
ph  /\  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) )  ->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A  .-  B )  =  ( C  .-  z ) ) )
89 oveq1 6309 . . . . . . 7  |-  ( x  =  C  ->  (
x  .-  y )  =  ( C  .-  y ) )
9089eqeq2d 2436 . . . . . 6  |-  ( x  =  C  ->  (
( C  .-  D
)  =  ( x 
.-  y )  <->  ( C  .-  D )  =  ( C  .-  y ) ) )
91 oveq1 6309 . . . . . . . . 9  |-  ( x  =  C  ->  (
x I y )  =  ( C I y ) )
9291eleq2d 2492 . . . . . . . 8  |-  ( x  =  C  ->  (
z  e.  ( x I y )  <->  z  e.  ( C I y ) ) )
93 oveq1 6309 . . . . . . . . 9  |-  ( x  =  C  ->  (
x  .-  z )  =  ( C  .-  z ) )
9493eqeq2d 2436 . . . . . . . 8  |-  ( x  =  C  ->  (
( A  .-  B
)  =  ( x 
.-  z )  <->  ( A  .-  B )  =  ( C  .-  z ) ) )
9592, 94anbi12d 715 . . . . . . 7  |-  ( x  =  C  ->  (
( z  e.  ( x I y )  /\  ( A  .-  B )  =  ( x  .-  z ) )  <->  ( z  e.  ( C I y )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) ) )
9695rexbidv 2939 . . . . . 6  |-  ( x  =  C  ->  ( E. z  e.  P  ( z  e.  ( x I y )  /\  ( A  .-  B )  =  ( x  .-  z ) )  <->  E. z  e.  P  ( z  e.  ( C I y )  /\  ( A  .-  B )  =  ( C  .-  z ) ) ) )
9790, 96anbi12d 715 . . . . 5  |-  ( x  =  C  ->  (
( ( C  .-  D )  =  ( x  .-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) )  <->  ( ( C  .-  D )  =  ( C  .-  y
)  /\  E. z  e.  P  ( z  e.  ( C I y )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) ) ) )
98 oveq2 6310 . . . . . . 7  |-  ( y  =  D  ->  ( C  .-  y )  =  ( C  .-  D
) )
9998eqeq2d 2436 . . . . . 6  |-  ( y  =  D  ->  (
( C  .-  D
)  =  ( C 
.-  y )  <->  ( C  .-  D )  =  ( C  .-  D ) ) )
100 oveq2 6310 . . . . . . . . 9  |-  ( y  =  D  ->  ( C I y )  =  ( C I D ) )
101100eleq2d 2492 . . . . . . . 8  |-  ( y  =  D  ->  (
z  e.  ( C I y )  <->  z  e.  ( C I D ) ) )
102101anbi1d 709 . . . . . . 7  |-  ( y  =  D  ->  (
( z  e.  ( C I y )  /\  ( A  .-  B )  =  ( C  .-  z ) )  <->  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) ) )
103102rexbidv 2939 . . . . . 6  |-  ( y  =  D  ->  ( E. z  e.  P  ( z  e.  ( C I y )  /\  ( A  .-  B )  =  ( C  .-  z ) )  <->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A  .-  B )  =  ( C  .-  z ) ) ) )
10499, 103anbi12d 715 . . . . 5  |-  ( y  =  D  ->  (
( ( C  .-  D )  =  ( C  .-  y )  /\  E. z  e.  P  ( z  e.  ( C I y )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) )  <->  ( ( C  .-  D )  =  ( C  .-  D
)  /\  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) ) ) )
10597, 104rspc2ev 3193 . . . 4  |-  ( ( C  e.  P  /\  D  e.  P  /\  ( ( C  .-  D )  =  ( C  .-  D )  /\  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) ) )  ->  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
10685, 86, 87, 88, 105syl112anc 1268 . . 3  |-  ( (
ph  /\  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) )  ->  E. x  e.  P  E. y  e.  P  ( ( C  .-  D )  =  ( x  .-  y )  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) ) )
10784, 106impbida 840 . 2  |-  ( ph  ->  ( E. x  e.  P  E. y  e.  P  ( ( C 
.-  D )  =  ( x  .-  y
)  /\  E. z  e.  P  ( z  e.  ( x I y )  /\  ( A 
.-  B )  =  ( x  .-  z
) ) )  <->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) ) )
10820, 107bitrd 256 1  |-  ( ph  ->  ( ( A  .-  B )  .<_  ( C 
.-  D )  <->  E. z  e.  P  ( z  e.  ( C I D )  /\  ( A 
.-  B )  =  ( C  .-  z
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868   E.wrex 2776   class class class wbr 4420   {copab 4478   ` cfv 5598  (class class class)co 6302   <"cs3 12929   Basecbs 15109   distcds 15187  TarskiGcstrkg 24465  Itvcitv 24471  LineGclng 24472  cgrGccgrg 24542  ≤Gcleg 24614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-om 6704  df-1st 6804  df-2nd 6805  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-pm 7480  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-card 8375  df-cda 8599  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-nn 10611  df-2 10669  df-3 10670  df-n0 10871  df-z 10939  df-uz 11161  df-fz 11786  df-fzo 11917  df-hash 12516  df-word 12657  df-concat 12659  df-s1 12660  df-s2 12935  df-s3 12936  df-trkgc 24483  df-trkgb 24484  df-trkgcb 24485  df-trkg 24488  df-cgrg 24543  df-leg 24615
This theorem is referenced by:  legov2  24618  legid  24619  btwnleg  24620  legtrd  24621  legtri3  24622  legtrid  24623  leg0  24624  mideulem  24765  opphllem3  24778
  Copyright terms: Public domain W3C validator