MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leexp1a Structured version   Unicode version

Theorem leexp1a 12198
Description: Weak mantissa ordering relationship for exponentiation. (Contributed by NM, 18-Dec-2005.)
Assertion
Ref Expression
leexp1a  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) )

Proof of Theorem leexp1a
Dummy variables  j 
k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6285 . . . . . . 7  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
2 oveq2 6285 . . . . . . 7  |-  ( j  =  0  ->  ( B ^ j )  =  ( B ^ 0 ) )
31, 2breq12d 4446 . . . . . 6  |-  ( j  =  0  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ 0 )  <_ 
( B ^ 0 ) ) )
43imbi2d 316 . . . . 5  |-  ( j  =  0  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
0 )  <_  ( B ^ 0 ) ) ) )
5 oveq2 6285 . . . . . . 7  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
6 oveq2 6285 . . . . . . 7  |-  ( j  =  k  ->  ( B ^ j )  =  ( B ^ k
) )
75, 6breq12d 4446 . . . . . 6  |-  ( j  =  k  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ k )  <_ 
( B ^ k
) ) )
87imbi2d 316 . . . . 5  |-  ( j  =  k  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
k )  <_  ( B ^ k ) ) ) )
9 oveq2 6285 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
10 oveq2 6285 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  ( B ^ j )  =  ( B ^ (
k  +  1 ) ) )
119, 10breq12d 4446 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) )
1211imbi2d 316 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
( k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) ) ) )
13 oveq2 6285 . . . . . . 7  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
14 oveq2 6285 . . . . . . 7  |-  ( j  =  N  ->  ( B ^ j )  =  ( B ^ N
) )
1513, 14breq12d 4446 . . . . . 6  |-  ( j  =  N  ->  (
( A ^ j
)  <_  ( B ^ j )  <->  ( A ^ N )  <_  ( B ^ N ) ) )
1615imbi2d 316 . . . . 5  |-  ( j  =  N  ->  (
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
j )  <_  ( B ^ j ) )  <-> 
( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) )
17 recn 9580 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
18 recn 9580 . . . . . . 7  |-  ( B  e.  RR  ->  B  e.  CC )
19 exp0 12144 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2019adantr 465 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  =  1 )
21 1le1 10178 . . . . . . . . 9  |-  1  <_  1
2220, 21syl6eqbr 4470 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  <_  1 )
23 exp0 12144 . . . . . . . . 9  |-  ( B  e.  CC  ->  ( B ^ 0 )  =  1 )
2423adantl 466 . . . . . . . 8  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( B ^ 0 )  =  1 )
2522, 24breqtrrd 4459 . . . . . . 7  |-  ( ( A  e.  CC  /\  B  e.  CC )  ->  ( A ^ 0 )  <_  ( B ^ 0 ) )
2617, 18, 25syl2an 477 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A ^ 0 )  <_  ( B ^ 0 ) )
2726adantr 465 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A ^ 0 )  <_ 
( B ^ 0 ) )
28 simpll 753 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  A  e.  RR )
29 reexpcl 12157 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  RR )
3028, 29sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A ^
k )  e.  RR )
31 simplll 757 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  A  e.  RR )
32 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  k  e.  NN0 )
33 simplrl 759 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  0  <_  A
)
34 expge0 12176 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0  /\  0  <_  A )  ->  0  <_  ( A ^ k
) )
3531, 32, 33, 34syl3anc 1227 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  0  <_  ( A ^ k ) )
36 simplr 754 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  B  e.  RR )
37 reexpcl 12157 . . . . . . . . . . . . . 14  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ k
)  e.  RR )
3836, 37sylan 471 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( B ^
k )  e.  RR )
3930, 35, 38jca31 534 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( ( A ^ k )  e.  RR  /\  0  <_  ( A ^ k
) )  /\  ( B ^ k )  e.  RR ) )
40 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  A  e.  RR )
41 simpl 457 . . . . . . . . . . . . . 14  |-  ( ( 0  <_  A  /\  A  <_  B )  -> 
0  <_  A )
4240, 41anim12i 566 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A  e.  RR  /\  0  <_  A ) )
4342adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A  e.  RR  /\  0  <_  A ) )
44 simpllr 758 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  B  e.  RR )
4539, 43, 44jca32 535 . . . . . . . . . . 11  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( ( ( A ^ k
)  e.  RR  /\  0  <_  ( A ^
k ) )  /\  ( B ^ k )  e.  RR )  /\  ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) ) )
4645adantr 465 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( ( ( A ^ k
)  e.  RR  /\  0  <_  ( A ^
k ) )  /\  ( B ^ k )  e.  RR )  /\  ( ( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) ) )
47 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
k )  <_  ( B ^ k ) )
48 simplrr 760 . . . . . . . . . . . 12  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  A  <_  B
)
4948adantr 465 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  A  <_  B
)
5047, 49jca 532 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( A ^ k )  <_ 
( B ^ k
)  /\  A  <_  B ) )
51 lemul12a 10401 . . . . . . . . . 10  |-  ( ( ( ( ( A ^ k )  e.  RR  /\  0  <_ 
( A ^ k
) )  /\  ( B ^ k )  e.  RR )  /\  (
( A  e.  RR  /\  0  <_  A )  /\  B  e.  RR ) )  ->  (
( ( A ^
k )  <_  ( B ^ k )  /\  A  <_  B )  -> 
( ( A ^
k )  x.  A
)  <_  ( ( B ^ k )  x.  B ) ) )
5246, 50, 51sylc 60 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( A ^ k )  x.  A )  <_  (
( B ^ k
)  x.  B ) )
53 expp1 12147 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5417, 53sylan 471 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
5554adantlr 714 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5655adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
5756adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
( k  +  1 ) )  =  ( ( A ^ k
)  x.  A ) )
58 expp1 12147 . . . . . . . . . . . . 13  |-  ( ( B  e.  CC  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
5918, 58sylan 471 . . . . . . . . . . . 12  |-  ( ( B  e.  RR  /\  k  e.  NN0 )  -> 
( B ^ (
k  +  1 ) )  =  ( ( B ^ k )  x.  B ) )
6059adantll 713 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6160adantlr 714 . . . . . . . . . 10  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6261adantr 465 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( B ^
( k  +  1 ) )  =  ( ( B ^ k
)  x.  B ) )
6352, 57, 623brtr4d 4463 . . . . . . . 8  |-  ( ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  /\  ( A ^
k )  <_  ( B ^ k ) )  ->  ( A ^
( k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) )
6463ex 434 . . . . . . 7  |-  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  /\  k  e.  NN0 )  ->  ( ( A ^ k )  <_ 
( B ^ k
)  ->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) )
6564expcom 435 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  (
( A ^ k
)  <_  ( B ^ k )  -> 
( A ^ (
k  +  1 ) )  <_  ( B ^ ( k  +  1 ) ) ) ) )
6665a2d 26 . . . . 5  |-  ( k  e.  NN0  ->  ( ( ( ( A  e.  RR  /\  B  e.  RR )  /\  (
0  <_  A  /\  A  <_  B ) )  ->  ( A ^
k )  <_  ( B ^ k ) )  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ ( k  +  1 ) )  <_ 
( B ^ (
k  +  1 ) ) ) ) )
674, 8, 12, 16, 27, 66nn0ind 10960 . . . 4  |-  ( N  e.  NN0  ->  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( 0  <_  A  /\  A  <_  B
) )  ->  ( A ^ N )  <_ 
( B ^ N
) ) )
6867exp4c 608 . . 3  |-  ( N  e.  NN0  ->  ( A  e.  RR  ->  ( B  e.  RR  ->  ( ( 0  <_  A  /\  A  <_  B )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) ) )
6968com3l 81 . 2  |-  ( A  e.  RR  ->  ( B  e.  RR  ->  ( N  e.  NN0  ->  ( ( 0  <_  A  /\  A  <_  B )  ->  ( A ^ N )  <_  ( B ^ N ) ) ) ) )
70693imp1 1208 1  |-  ( ( ( A  e.  RR  /\  B  e.  RR  /\  N  e.  NN0 )  /\  ( 0  <_  A  /\  A  <_  B ) )  ->  ( A ^ N )  <_  ( B ^ N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 972    = wceq 1381    e. wcel 1802   class class class wbr 4433  (class class class)co 6277   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    <_ cle 9627   NN0cn0 10796   ^cexp 12140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-2nd 6782  df-recs 7040  df-rdg 7074  df-er 7309  df-en 7515  df-dom 7516  df-sdom 7517  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9807  df-neg 9808  df-nn 10538  df-n0 10797  df-z 10866  df-uz 11086  df-seq 12082  df-exp 12141
This theorem is referenced by:  expubnd  12200  facubnd  12352  pserulm  22682  logexprlim  23365  ostth2lem2  23684  ostth3  23688  dvdivbd  31620  stoweidlem1  31668  stoweidlem24  31691
  Copyright terms: Public domain W3C validator