MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ledivmul Structured version   Unicode version

Theorem ledivmul 10409
Description: 'Less than or equal to' relationship between division and multiplication. (Contributed by NM, 9-Dec-2005.)
Assertion
Ref Expression
ledivmul  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <_  B  <->  A  <_  ( C  x.  B ) ) )

Proof of Theorem ledivmul
StepHypRef Expression
1 remulcl 9568 . . . . . 6  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  x.  B
)  e.  RR )
21ancoms 453 . . . . 5  |-  ( ( B  e.  RR  /\  C  e.  RR )  ->  ( C  x.  B
)  e.  RR )
32adantrr 716 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( C  x.  B )  e.  RR )
433adant1 1009 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( C  x.  B
)  e.  RR )
5 lediv1 10398 . . 3  |-  ( ( A  e.  RR  /\  ( C  x.  B
)  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( A  <_  ( C  x.  B
)  <->  ( A  /  C )  <_  (
( C  x.  B
)  /  C ) ) )
64, 5syld3an2 1270 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( A  <_  ( C  x.  B )  <->  ( A  /  C )  <_  ( ( C  x.  B )  /  C ) ) )
7 recn 9573 . . . . . 6  |-  ( B  e.  RR  ->  B  e.  CC )
87adantr 465 . . . . 5  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  B  e.  CC )
9 recn 9573 . . . . . 6  |-  ( C  e.  RR  ->  C  e.  CC )
109ad2antrl 727 . . . . 5  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  e.  CC )
11 gt0ne0 10008 . . . . . 6  |-  ( ( C  e.  RR  /\  0  <  C )  ->  C  =/=  0 )
1211adantl 466 . . . . 5  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  C  =/=  0 )
138, 10, 12divcan3d 10316 . . . 4  |-  ( ( B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  ->  ( ( C  x.  B )  /  C )  =  B )
14133adant1 1009 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( C  x.  B )  /  C
)  =  B )
1514breq2d 4454 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <_  (
( C  x.  B
)  /  C )  <-> 
( A  /  C
)  <_  B )
)
166, 15bitr2d 254 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  ( C  e.  RR  /\  0  <  C ) )  -> 
( ( A  /  C )  <_  B  <->  A  <_  ( C  x.  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762    =/= wne 2657   class class class wbr 4442  (class class class)co 6277   CCcc 9481   RRcr 9482   0cc0 9483    x. cmul 9488    < clt 9619    <_ cle 9620    / cdiv 10197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569  ax-resscn 9540  ax-1cn 9541  ax-icn 9542  ax-addcl 9543  ax-addrcl 9544  ax-mulcl 9545  ax-mulrcl 9546  ax-mulcom 9547  ax-addass 9548  ax-mulass 9549  ax-distr 9550  ax-i2m1 9551  ax-1ne0 9552  ax-1rid 9553  ax-rnegex 9554  ax-rrecex 9555  ax-cnre 9556  ax-pre-lttri 9557  ax-pre-lttrn 9558  ax-pre-ltadd 9559  ax-pre-mulgt0 9560
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-nel 2660  df-ral 2814  df-rex 2815  df-reu 2816  df-rmo 2817  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-op 4029  df-uni 4241  df-br 4443  df-opab 4501  df-mpt 4502  df-id 4790  df-po 4795  df-so 4796  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-er 7303  df-en 7509  df-dom 7510  df-sdom 7511  df-pnf 9621  df-mnf 9622  df-xr 9623  df-ltxr 9624  df-le 9625  df-sub 9798  df-neg 9799  df-div 10198
This theorem is referenced by:  ledivmul2  10413  ledivmul2OLD  10414  rpnnen1lem3  11201  ledivmuld  11296  divelunit  11653  discr1  12259  faclbnd2  12326  sqrlem7  13034  o1fsum  13578  eftlub  13696  eflegeo  13708  4sqlem16  14328  iihalf2  21163  lebnumii  21196  ovolscalem1  21654  itg2mulclem  21883  abelthlem7  22562  pilem2  22576  sinhalfpilem  22584  sincosq1lem  22618  cxpaddle  22849  leibpi  22996  log2ublem1  23000  jensenlem2  23040  harmonicbnd4  23063  fsumfldivdiaglem  23188  bcmono  23275  lgsquadlem1  23352  rplogsumlem1  23392  rplogsumlem2  23393  dchrisum0lem2a  23425  mulogsumlem  23439  pntlemr  23510  ttgcontlem1  23859  unitdivcld  27507  cvmliftlem2  28359  snmlff  28402  sin2h  29611
  Copyright terms: Public domain W3C validator