MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lecasei Structured version   Visualization version   Unicode version

Theorem lecasei 9771
Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007.)
Hypotheses
Ref Expression
lecase.1  |-  ( ph  ->  A  e.  RR )
lecase.2  |-  ( ph  ->  B  e.  RR )
lecase.3  |-  ( (
ph  /\  A  <_  B )  ->  ps )
lecase.4  |-  ( (
ph  /\  B  <_  A )  ->  ps )
Assertion
Ref Expression
lecasei  |-  ( ph  ->  ps )

Proof of Theorem lecasei
StepHypRef Expression
1 lecase.3 . 2  |-  ( (
ph  /\  A  <_  B )  ->  ps )
2 lecase.4 . 2  |-  ( (
ph  /\  B  <_  A )  ->  ps )
3 lecase.1 . . 3  |-  ( ph  ->  A  e.  RR )
4 lecase.2 . . 3  |-  ( ph  ->  B  e.  RR )
5 letric 9765 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <_  B  \/  B  <_  A ) )
63, 4, 5syl2anc 671 . 2  |-  ( ph  ->  ( A  <_  B  \/  B  <_  A ) )
71, 2, 6mpjaodan 800 1  |-  ( ph  ->  ps )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 374    /\ wa 375    e. wcel 1898   class class class wbr 4418   RRcr 9569    <_ cle 9707
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615  ax-resscn 9627  ax-pre-lttri 9644
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-nel 2636  df-ral 2754  df-rex 2755  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-op 3987  df-uni 4213  df-br 4419  df-opab 4478  df-mpt 4479  df-id 4771  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-er 7394  df-en 7601  df-dom 7602  df-sdom 7603  df-pnf 9708  df-mnf 9709  df-xr 9710  df-ltxr 9711  df-le 9712
This theorem is referenced by:  wloglei  10179  nn2ge  10667  max0sub  11523  leabs  13417  max0add  13428  limsupgre  13597  limsupgreOLD  13598  ntrivcvgmul  14013  1arithlem4  14925  mndodcong  17246  metustto  21623  reconn  21901  dyaddisj  22610  volcn  22620  ditgcl  22869  ditgswap  22870  ditgsplit  22872  dvfsumlem3  23036  ftc2ditg  23054  coseq0negpitopi  23514  asinlem3  23853  atanlogaddlem  23895  atanlogadd  23896  ppiub  24188  dchrisum0  24414  pntrmax  24458  padicabv  24524  nacsfix  35600  acongrep  35876  hbt  36035
  Copyright terms: Public domain W3C validator