MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem3OLD Structured version   Visualization version   Unicode version

Theorem lebnumlem3OLD 21987
Description: Lemma for lebnum 21988. By the previous lemmas,  F is continuous and positive on a compact set, so it has a positive minimum  r. Then setting  d  =  r  /  # ( U ), since for each  u  e.  U we have  ball ( x ,  d )  C_  u iff  d  <_  d ( x ,  X  \  u ), if  -.  ball (
x ,  d ) 
C_  u for all  u then summing over  u yields  sum_ u  e.  U
d ( x ,  X  \  u )  =  F ( x )  <  sum_ u  e.  U d  =  r, in contradiction to the assumption that  r is the minimum of  F. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) Obsolete version of lebnumlem3 21984 as of 20-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
lebnum.j  |-  J  =  ( MetOpen `  D )
lebnum.d  |-  ( ph  ->  D  e.  ( Met `  X ) )
lebnum.c  |-  ( ph  ->  J  e.  Comp )
lebnum.s  |-  ( ph  ->  U  C_  J )
lebnum.u  |-  ( ph  ->  X  =  U. U
)
lebnumlem1OLD.u  |-  ( ph  ->  U  e.  Fin )
lebnumlem1OLD.n  |-  ( ph  ->  -.  X  e.  U
)
lebnumlem1OLD.f  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
lebnumlem2OLD.k  |-  K  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
lebnumlem3OLD  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Distinct variable groups:    k, d, u, x, y, z, D    J, d, k, x, y, z    U, d, k, u, x, y, z    x, F    ph, d, k, x, y, z    X, d, k, u, x, y, z    x, K
Allowed substitution hints:    ph( u)    F( y, z, u, k, d)    J( u)    K( y, z, u, k, d)

Proof of Theorem lebnumlem3OLD
Dummy variables  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11303 . . . 4  |-  1  e.  RR+
21ne0ii 3737 . . 3  |-  RR+  =/=  (/)
3 ral0 3873 . . . . 5  |-  A. x  e.  (/)  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
4 simpr 463 . . . . . 6  |-  ( (
ph  /\  X  =  (/) )  ->  X  =  (/) )
54raleqdv 2992 . . . . 5  |-  ( (
ph  /\  X  =  (/) )  ->  ( A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<-> 
A. x  e.  (/)  E. u  e.  U  ( x ( ball `  D
) d )  C_  u ) )
63, 5mpbiri 237 . . . 4  |-  ( (
ph  /\  X  =  (/) )  ->  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
d )  C_  u
)
76ralrimivw 2802 . . 3  |-  ( (
ph  /\  X  =  (/) )  ->  A. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
8 r19.2z 3857 . . 3  |-  ( (
RR+  =/=  (/)  /\  A. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
d )  C_  u
)  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
92, 7, 8sylancr 668 . 2  |-  ( (
ph  /\  X  =  (/) )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
10 lebnum.j . . . . . . 7  |-  J  =  ( MetOpen `  D )
11 lebnum.d . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
12 lebnum.c . . . . . . 7  |-  ( ph  ->  J  e.  Comp )
13 lebnum.s . . . . . . 7  |-  ( ph  ->  U  C_  J )
14 lebnum.u . . . . . . 7  |-  ( ph  ->  X  =  U. U
)
15 lebnumlem1OLD.u . . . . . . 7  |-  ( ph  ->  U  e.  Fin )
16 lebnumlem1OLD.n . . . . . . 7  |-  ( ph  ->  -.  X  e.  U
)
17 lebnumlem1OLD.f . . . . . . 7  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
1810, 11, 12, 13, 14, 15, 16, 17lebnumlem1OLD 21985 . . . . . 6  |-  ( ph  ->  F : X --> RR+ )
1918adantr 467 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  F : X
--> RR+ )
20 frn 5733 . . . . 5  |-  ( F : X --> RR+  ->  ran 
F  C_  RR+ )
2119, 20syl 17 . . . 4  |-  ( (
ph  /\  X  =/=  (/) )  ->  ran  F  C_  RR+ )
22 eqid 2450 . . . . . . 7  |-  U. J  =  U. J
23 lebnumlem2OLD.k . . . . . . 7  |-  K  =  ( topGen `  ran  (,) )
2412adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  J  e.  Comp )
2510, 11, 12, 13, 14, 15, 16, 17, 23lebnumlem2OLD 21986 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2625adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  F  e.  ( J  Cn  K
) )
27 metxmet 21342 . . . . . . . . . 10  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2810mopnuni 21449 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
2911, 27, 283syl 18 . . . . . . . . 9  |-  ( ph  ->  X  =  U. J
)
3029neeq1d 2682 . . . . . . . 8  |-  ( ph  ->  ( X  =/=  (/)  <->  U. J  =/=  (/) ) )
3130biimpa 487 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  U. J  =/=  (/) )
3222, 23, 24, 26, 31evth2 21981 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. w  e.  U. J A. x  e.  U. J ( F `
 w )  <_ 
( F `  x
) )
3329adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  X  =  U. J )
34 raleq 2986 . . . . . . . 8  |-  ( X  =  U. J  -> 
( A. x  e.  X  ( F `  w )  <_  ( F `  x )  <->  A. x  e.  U. J
( F `  w
)  <_  ( F `  x ) ) )
3534rexeqbi1dv 2995 . . . . . . 7  |-  ( X  =  U. J  -> 
( E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )  <->  E. w  e.  U. J A. x  e.  U. J
( F `  w
)  <_  ( F `  x ) ) )
3633, 35syl 17 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x
)  <->  E. w  e.  U. J A. x  e.  U. J ( F `  w )  <_  ( F `  x )
) )
3732, 36mpbird 236 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )
)
38 ffn 5726 . . . . . 6  |-  ( F : X --> RR+  ->  F  Fn  X )
39 breq1 4404 . . . . . . . 8  |-  ( r  =  ( F `  w )  ->  (
r  <_  ( F `  x )  <->  ( F `  w )  <_  ( F `  x )
) )
4039ralbidv 2826 . . . . . . 7  |-  ( r  =  ( F `  w )  ->  ( A. x  e.  X  r  <_  ( F `  x )  <->  A. x  e.  X  ( F `  w )  <_  ( F `  x )
) )
4140rexrn 6022 . . . . . 6  |-  ( F  Fn  X  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x )  <->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )
) )
4219, 38, 413syl 18 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x
)  <->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x ) ) )
4337, 42mpbird 236 . . . 4  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x ) )
44 ssrexv 3493 . . . 4  |-  ( ran 
F  C_  RR+  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x )  ->  E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )
) )
4521, 43, 44sylc 62 . . 3  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )
)
46 simpr 463 . . . . . 6  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  r  e.  RR+ )
4714ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  X  =  U. U )
48 simplr 761 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  X  =/=  (/) )
4947, 48eqnetrrd 2691 . . . . . . . . 9  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U. U  =/=  (/) )
50 unieq 4205 . . . . . . . . . . 11  |-  ( U  =  (/)  ->  U. U  =  U. (/) )
51 uni0 4224 . . . . . . . . . . 11  |-  U. (/)  =  (/)
5250, 51syl6eq 2500 . . . . . . . . . 10  |-  ( U  =  (/)  ->  U. U  =  (/) )
5352necon3i 2655 . . . . . . . . 9  |-  ( U. U  =/=  (/)  ->  U  =/=  (/) )
5449, 53syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U  =/=  (/) )
5515ad2antrr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U  e.  Fin )
56 hashnncl 12544 . . . . . . . . 9  |-  ( U  e.  Fin  ->  (
( # `  U )  e.  NN  <->  U  =/=  (/) ) )
5755, 56syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  (
( # `  U )  e.  NN  <->  U  =/=  (/) ) )
5854, 57mpbird 236 . . . . . . 7  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( # `
 U )  e.  NN )
5958nnrpd 11336 . . . . . 6  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( # `
 U )  e.  RR+ )
6046, 59rpdivcld 11355 . . . . 5  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  (
r  /  ( # `  U ) )  e.  RR+ )
61 ralnex 2833 . . . . . . . 8  |-  ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  -.  E. u  e.  U  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
6255adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  U  e.  Fin )
6354adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  U  =/=  (/) )
64 simprl 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  x  e.  X )
6564adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  x  e.  X )
66 eqid 2450 . . . . . . . . . . . . . . 15  |-  ( y  e.  X  |->  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )  =  ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
6766metdsvalOLD 21872 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  (
( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x
)  =  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  `'  <  ) )
6865, 67syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x
)  =  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  `'  <  ) )
6911ad2antrr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  D  e.  ( Met `  X
) )
7069ad2antrr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  D  e.  ( Met `  X ) )
71 difssd 3560 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( X  \  k
)  C_  X )
72 elssuni 4226 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  U  ->  k  C_ 
U. U )
7372adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  C_  U. U )
7447ad2antrr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  X  =  U. U
)
7573, 74sseqtr4d 3468 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  C_  X )
76 eleq1 2516 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  X  ->  (
k  e.  U  <->  X  e.  U ) )
7776notbid 296 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  X  ->  ( -.  k  e.  U  <->  -.  X  e.  U ) )
7816, 77syl5ibrcom 226 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( k  =  X  ->  -.  k  e.  U ) )
7978necon2ad 2638 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  e.  U  ->  k  =/=  X ) )
8079ad3antrrr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( k  e.  U  ->  k  =/=  X ) )
8180imp 431 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  =/=  X )
82 pssdifn0 3826 . . . . . . . . . . . . . . . 16  |-  ( ( k  C_  X  /\  k  =/=  X )  -> 
( X  \  k
)  =/=  (/) )
8375, 81, 82syl2anc 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( X  \  k
)  =/=  (/) )
8466metdsreOLD 21878 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  ( X  \  k )  C_  X  /\  ( X  \ 
k )  =/=  (/) )  -> 
( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
8570, 71, 83, 84syl3anc 1267 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
8685, 65ffvelrnd 6021 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x
)  e.  RR )
8768, 86eqeltrrd 2529 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( x D z ) ) ,  RR* ,  `'  <  )  e.  RR )
8860ad2antrr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR+ )
8988rpred 11338 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR )
90 simprr 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u )
91 sseq2 3453 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  k  ->  (
( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  k ) )
9291notbid 296 . . . . . . . . . . . . . . . . 17  |-  ( u  =  k  ->  ( -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  -.  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  k )
)
9392rspccva 3148 . . . . . . . . . . . . . . . 16  |-  ( ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  /\  k  e.  U
)  ->  -.  (
x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
)
9490, 93sylan 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  -.  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  k )
9570, 27syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  D  e.  ( *Met `  X ) )
9688rpxrd 11339 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR* )
9766metdsgeOLD 21874 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( X  \  k )  C_  X  /\  x  e.  X
)  /\  ( r  /  ( # `  U
) )  e.  RR* )  ->  ( ( r  /  ( # `  U
) )  <_  (
( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x
)  <->  ( ( X 
\  k )  i^i  ( x ( ball `  D ) ( r  /  ( # `  U
) ) ) )  =  (/) ) )
9895, 71, 65, 96, 97syl31anc 1270 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x )  <-> 
( ( X  \ 
k )  i^i  (
x ( ball `  D
) ( r  / 
( # `  U ) ) ) )  =  (/) ) )
99 blssm 21426 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  ( # `
 U ) )  e.  RR* )  ->  (
x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  X
)
10095, 65, 96, 99syl3anc 1267 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  X )
101 difin0ss 3832 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  \  k
)  i^i  ( x
( ball `  D )
( r  /  ( # `
 U ) ) ) )  =  (/)  ->  ( ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  X  ->  ( x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
) )
102100, 101syl5com 31 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( ( X 
\  k )  i^i  ( x ( ball `  D ) ( r  /  ( # `  U
) ) ) )  =  (/)  ->  ( x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
) )
10398, 102sylbid 219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x )  ->  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  k )
)
10494, 103mtod 181 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  -.  ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x ) )
10586, 89ltnled 9779 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( ( y  e.  X  |->  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x )  <  (
r  /  ( # `  U ) )  <->  -.  (
r  /  ( # `  U ) )  <_ 
( ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x
) ) )
106104, 105mpbird 236 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) `  x
)  <  ( r  /  ( # `  U
) ) )
10768, 106eqbrtrrd 4424 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( x D z ) ) ,  RR* ,  `'  <  )  <  ( r  /  ( # `  U
) ) )
10862, 63, 87, 89, 107fsumlt 13853 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( x D z ) ) , 
RR* ,  `'  <  )  <  sum_ k  e.  U  ( r  /  ( # `
 U ) ) )
109 oveq1 6295 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  (
y D z )  =  ( x D z ) )
110109mpteq2dv 4489 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
z  e.  ( X 
\  k )  |->  ( y D z ) )  =  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) )
111110rneqd 5061 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) )  =  ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) )
112111supeq1d 7957 . . . . . . . . . . . . . 14  |-  ( y  =  x  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  =  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  `'  <  ) )
113112sumeq2sdv 13763 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  =  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( x D z ) ) , 
RR* ,  `'  <  ) )
114 sumex 13747 . . . . . . . . . . . . 13  |-  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  `'  <  )  e.  _V
115113, 17, 114fvmpt 5946 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  ( F `  x )  =  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) ,  RR* ,  `'  <  ) )
11664, 115syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  =  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  `'  <  ) )
11760adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( r  /  ( # `
 U ) )  e.  RR+ )
118117rpcnd 11340 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( r  /  ( # `
 U ) )  e.  CC )
119 fsumconst 13844 . . . . . . . . . . . . 13  |-  ( ( U  e.  Fin  /\  ( r  /  ( # `
 U ) )  e.  CC )  ->  sum_ k  e.  U  ( r  /  ( # `  U ) )  =  ( ( # `  U
)  x.  ( r  /  ( # `  U
) ) ) )
12062, 118, 119syl2anc 666 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  sum_ k  e.  U  ( r  /  ( # `  U ) )  =  ( ( # `  U
)  x.  ( r  /  ( # `  U
) ) ) )
121 simplr 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  RR+ )
122121rpcnd 11340 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  CC )
12358adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  e.  NN )
124123nncnd 10622 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  e.  CC )
125123nnne0d 10651 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  =/=  0 )
126122, 124, 125divcan2d 10382 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( ( # `  U
)  x.  ( r  /  ( # `  U
) ) )  =  r )
127120, 126eqtr2d 2485 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  =  sum_ k  e.  U  ( r  /  ( # `  U
) ) )
128108, 116, 1273brtr4d 4432 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  <  r )
12919ad2antrr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  F : X --> RR+ )
130129, 64ffvelrnd 6021 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  e.  RR+ )
131130rpred 11338 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  e.  RR )
132121rpred 11338 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  RR )
133131, 132ltnled 9779 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( ( F `  x )  <  r  <->  -.  r  <_  ( F `  x ) ) )
134128, 133mpbid 214 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  -.  r  <_  ( F `
 x ) )
135134expr 619 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  ->  -.  r  <_  ( F `  x ) ) )
13661, 135syl5bir 222 . . . . . . 7  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( -.  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  ->  -.  r  <_  ( F `  x ) ) )
137136con4d 109 . . . . . 6  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  (
r  <_  ( F `  x )  ->  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
)
138137ralimdva 2795 . . . . 5  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( A. x  e.  X  r  <_  ( F `  x )  ->  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
)
139 oveq2 6296 . . . . . . . . 9  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( x
( ball `  D )
d )  =  ( x ( ball `  D
) ( r  / 
( # `  U ) ) ) )
140139sseq1d 3458 . . . . . . . 8  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( (
x ( ball `  D
) d )  C_  u 
<->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
141140rexbidv 2900 . . . . . . 7  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<->  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
142141ralbidv 2826 . . . . . 6  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<-> 
A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
143142rspcev 3149 . . . . 5  |-  ( ( ( r  /  ( # `
 U ) )  e.  RR+  /\  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
14460, 138, 143syl6an 548 . . . 4  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( A. x  e.  X  r  <_  ( F `  x )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
) )
145144rexlimdva 2878 . . 3  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u ) )
14645, 145mpd 15 . 2  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
1479, 146pm2.61dane 2710 1  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737    \ cdif 3400    i^i cin 3402    C_ wss 3403   (/)c0 3730   U.cuni 4197   class class class wbr 4401    |-> cmpt 4460   `'ccnv 4832   ran crn 4834    Fn wfn 5576   -->wf 5577   ` cfv 5581  (class class class)co 6288   Fincfn 7566   supcsup 7951   CCcc 9534   RRcr 9535   1c1 9537    x. cmul 9541   RR*cxr 9671    < clt 9672    <_ cle 9673    / cdiv 10266   NNcn 10606   RR+crp 11299   (,)cioo 11632   #chash 12512   sum_csu 13745   topGenctg 15329   *Metcxmt 18948   Metcme 18949   ballcbl 18950   MetOpencmopn 18953    Cn ccn 20233   Compccmp 20394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614  ax-addf 9615  ax-mulf 9616
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-iin 4280  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-of 6528  df-om 6690  df-1st 6790  df-2nd 6791  df-supp 6912  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-2o 7180  df-oadd 7183  df-er 7360  df-ec 7362  df-map 7471  df-ixp 7520  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-fsupp 7881  df-fi 7922  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-cda 8595  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-4 10667  df-5 10668  df-6 10669  df-7 10670  df-8 10671  df-9 10672  df-10 10673  df-n0 10867  df-z 10935  df-dec 11049  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ioo 11636  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-clim 13545  df-sum 13746  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-cnfld 18964  df-top 19914  df-bases 19915  df-topon 19916  df-topsp 19917  df-cld 20027  df-ntr 20028  df-cls 20029  df-cn 20236  df-cnp 20237  df-cmp 20395  df-tx 20570  df-hmeo 20763  df-xms 21328  df-ms 21329  df-tms 21330
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator