MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem3 Structured version   Unicode version

Theorem lebnumlem3 21983
Description: Lemma for lebnum 21987. By the previous lemmas,  F is continuous and positive on a compact set, so it has a positive minimum  r. Then setting  d  =  r  /  # ( U ), since for each  u  e.  U we have  ball ( x ,  d )  C_  u iff  d  <_  d ( x ,  X  \  u ), if  -.  ball (
x ,  d ) 
C_  u for all  u then summing over  u yields  sum_ u  e.  U
d ( x ,  X  \  u )  =  F ( x )  <  sum_ u  e.  U d  =  r, in contradiction to the assumption that  r is the minimum of  F. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j  |-  J  =  ( MetOpen `  D )
lebnum.d  |-  ( ph  ->  D  e.  ( Met `  X ) )
lebnum.c  |-  ( ph  ->  J  e.  Comp )
lebnum.s  |-  ( ph  ->  U  C_  J )
lebnum.u  |-  ( ph  ->  X  =  U. U
)
lebnumlem1.u  |-  ( ph  ->  U  e.  Fin )
lebnumlem1.n  |-  ( ph  ->  -.  X  e.  U
)
lebnumlem1.f  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) )
lebnumlem2.k  |-  K  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
lebnumlem3  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Distinct variable groups:    k, d, u, x, y, z, D    J, d, k, x, y, z    U, d, k, u, x, y, z    x, F    ph, d, k, x, y, z    X, d, k, u, x, y, z    x, K
Allowed substitution hints:    ph( u)    F( y, z, u, k, d)    J( u)    K( y, z, u, k, d)

Proof of Theorem lebnumlem3
Dummy variables  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11308 . . . 4  |-  1  e.  RR+
21ne0ii 3769 . . 3  |-  RR+  =/=  (/)
3 ral0 3903 . . . . 5  |-  A. x  e.  (/)  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
4 simpr 463 . . . . . 6  |-  ( (
ph  /\  X  =  (/) )  ->  X  =  (/) )
54raleqdv 3032 . . . . 5  |-  ( (
ph  /\  X  =  (/) )  ->  ( A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<-> 
A. x  e.  (/)  E. u  e.  U  ( x ( ball `  D
) d )  C_  u ) )
63, 5mpbiri 237 . . . 4  |-  ( (
ph  /\  X  =  (/) )  ->  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
d )  C_  u
)
76ralrimivw 2841 . . 3  |-  ( (
ph  /\  X  =  (/) )  ->  A. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
8 r19.2z 3887 . . 3  |-  ( (
RR+  =/=  (/)  /\  A. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
d )  C_  u
)  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
92, 7, 8sylancr 668 . 2  |-  ( (
ph  /\  X  =  (/) )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
10 lebnum.j . . . . . . 7  |-  J  =  ( MetOpen `  D )
11 lebnum.d . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
12 lebnum.c . . . . . . 7  |-  ( ph  ->  J  e.  Comp )
13 lebnum.s . . . . . . 7  |-  ( ph  ->  U  C_  J )
14 lebnum.u . . . . . . 7  |-  ( ph  ->  X  =  U. U
)
15 lebnumlem1.u . . . . . . 7  |-  ( ph  ->  U  e.  Fin )
16 lebnumlem1.n . . . . . . 7  |-  ( ph  ->  -.  X  e.  U
)
17 lebnumlem1.f . . . . . . 7  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) )
1810, 11, 12, 13, 14, 15, 16, 17lebnumlem1 21981 . . . . . 6  |-  ( ph  ->  F : X --> RR+ )
1918adantr 467 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  F : X
--> RR+ )
20 frn 5750 . . . . 5  |-  ( F : X --> RR+  ->  ran 
F  C_  RR+ )
2119, 20syl 17 . . . 4  |-  ( (
ph  /\  X  =/=  (/) )  ->  ran  F  C_  RR+ )
22 eqid 2423 . . . . . . 7  |-  U. J  =  U. J
23 lebnumlem2.k . . . . . . 7  |-  K  =  ( topGen `  ran  (,) )
2412adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  J  e.  Comp )
2510, 11, 12, 13, 14, 15, 16, 17, 23lebnumlem2 21982 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2625adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  F  e.  ( J  Cn  K
) )
27 metxmet 21341 . . . . . . . . . 10  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2810mopnuni 21448 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
2911, 27, 283syl 18 . . . . . . . . 9  |-  ( ph  ->  X  =  U. J
)
3029neeq1d 2702 . . . . . . . 8  |-  ( ph  ->  ( X  =/=  (/)  <->  U. J  =/=  (/) ) )
3130biimpa 487 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  U. J  =/=  (/) )
3222, 23, 24, 26, 31evth2 21980 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. w  e.  U. J A. x  e.  U. J ( F `
 w )  <_ 
( F `  x
) )
3329adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  X  =  U. J )
34 raleq 3026 . . . . . . . 8  |-  ( X  =  U. J  -> 
( A. x  e.  X  ( F `  w )  <_  ( F `  x )  <->  A. x  e.  U. J
( F `  w
)  <_  ( F `  x ) ) )
3534rexeqbi1dv 3035 . . . . . . 7  |-  ( X  =  U. J  -> 
( E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )  <->  E. w  e.  U. J A. x  e.  U. J
( F `  w
)  <_  ( F `  x ) ) )
3633, 35syl 17 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x
)  <->  E. w  e.  U. J A. x  e.  U. J ( F `  w )  <_  ( F `  x )
) )
3732, 36mpbird 236 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )
)
38 ffn 5744 . . . . . 6  |-  ( F : X --> RR+  ->  F  Fn  X )
39 breq1 4424 . . . . . . . 8  |-  ( r  =  ( F `  w )  ->  (
r  <_  ( F `  x )  <->  ( F `  w )  <_  ( F `  x )
) )
4039ralbidv 2865 . . . . . . 7  |-  ( r  =  ( F `  w )  ->  ( A. x  e.  X  r  <_  ( F `  x )  <->  A. x  e.  X  ( F `  w )  <_  ( F `  x )
) )
4140rexrn 6037 . . . . . 6  |-  ( F  Fn  X  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x )  <->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )
) )
4219, 38, 413syl 18 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x
)  <->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x ) ) )
4337, 42mpbird 236 . . . 4  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x ) )
44 ssrexv 3527 . . . 4  |-  ( ran 
F  C_  RR+  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x )  ->  E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )
) )
4521, 43, 44sylc 63 . . 3  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )
)
46 simpr 463 . . . . . 6  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  r  e.  RR+ )
4714ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  X  =  U. U )
48 simplr 761 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  X  =/=  (/) )
4947, 48eqnetrrd 2719 . . . . . . . . 9  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U. U  =/=  (/) )
50 unieq 4225 . . . . . . . . . . 11  |-  ( U  =  (/)  ->  U. U  =  U. (/) )
51 uni0 4244 . . . . . . . . . . 11  |-  U. (/)  =  (/)
5250, 51syl6eq 2480 . . . . . . . . . 10  |-  ( U  =  (/)  ->  U. U  =  (/) )
5352necon3i 2665 . . . . . . . . 9  |-  ( U. U  =/=  (/)  ->  U  =/=  (/) )
5449, 53syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U  =/=  (/) )
5515ad2antrr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U  e.  Fin )
56 hashnncl 12548 . . . . . . . . 9  |-  ( U  e.  Fin  ->  (
( # `  U )  e.  NN  <->  U  =/=  (/) ) )
5755, 56syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  (
( # `  U )  e.  NN  <->  U  =/=  (/) ) )
5854, 57mpbird 236 . . . . . . 7  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( # `
 U )  e.  NN )
5958nnrpd 11341 . . . . . 6  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( # `
 U )  e.  RR+ )
6046, 59rpdivcld 11360 . . . . 5  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  (
r  /  ( # `  U ) )  e.  RR+ )
61 ralnex 2872 . . . . . . . 8  |-  ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  -.  E. u  e.  U  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
6255adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  U  e.  Fin )
6354adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  U  =/=  (/) )
64 simprl 763 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  x  e.  X )
6564adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  x  e.  X )
66 eqid 2423 . . . . . . . . . . . . . . 15  |-  ( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  ) )  =  ( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
)
6766metdsval 21856 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  (
( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
) `  x )  = inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) ,  RR* ,  <  )
)
6865, 67syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |-> inf ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  <  ) ) `  x )  = inf ( ran  (
z  e.  ( X 
\  k )  |->  ( x D z ) ) ,  RR* ,  <  ) )
6911ad2antrr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  D  e.  ( Met `  X
) )
7069ad2antrr 731 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  D  e.  ( Met `  X ) )
71 difssd 3594 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( X  \  k
)  C_  X )
72 elssuni 4246 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  U  ->  k  C_ 
U. U )
7372adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  C_  U. U )
7447ad2antrr 731 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  X  =  U. U
)
7573, 74sseqtr4d 3502 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  C_  X )
76 eleq1 2495 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  X  ->  (
k  e.  U  <->  X  e.  U ) )
7776notbid 296 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  X  ->  ( -.  k  e.  U  <->  -.  X  e.  U ) )
7816, 77syl5ibrcom 226 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( k  =  X  ->  -.  k  e.  U ) )
7978necon2ad 2638 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  e.  U  ->  k  =/=  X ) )
8079ad3antrrr 735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( k  e.  U  ->  k  =/=  X ) )
8180imp 431 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  =/=  X )
82 pssdifn0 3856 . . . . . . . . . . . . . . . 16  |-  ( ( k  C_  X  /\  k  =/=  X )  -> 
( X  \  k
)  =/=  (/) )
8375, 81, 82syl2anc 666 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( X  \  k
)  =/=  (/) )
8466metdsre 21862 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  ( X  \  k )  C_  X  /\  ( X  \ 
k )  =/=  (/) )  -> 
( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
) : X --> RR )
8570, 71, 83, 84syl3anc 1265 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
) : X --> RR )
8685, 65ffvelrnd 6036 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |-> inf ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  <  ) ) `  x )  e.  RR )
8768, 86eqeltrrd 2512 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  -> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) ,  RR* ,  <  )  e.  RR )
8860ad2antrr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR+ )
8988rpred 11343 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR )
90 simprr 765 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u )
91 sseq2 3487 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  k  ->  (
( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  k ) )
9291notbid 296 . . . . . . . . . . . . . . . . 17  |-  ( u  =  k  ->  ( -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  -.  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  k )
)
9392rspccva 3182 . . . . . . . . . . . . . . . 16  |-  ( ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  /\  k  e.  U
)  ->  -.  (
x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
)
9490, 93sylan 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  -.  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  k )
9570, 27syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  D  e.  ( *Met `  X ) )
9688rpxrd 11344 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR* )
9766metdsge 21858 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( X  \  k )  C_  X  /\  x  e.  X
)  /\  ( r  /  ( # `  U
) )  e.  RR* )  ->  ( ( r  /  ( # `  U
) )  <_  (
( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
) `  x )  <->  ( ( X  \  k
)  i^i  ( x
( ball `  D )
( r  /  ( # `
 U ) ) ) )  =  (/) ) )
9895, 71, 65, 96, 97syl31anc 1268 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) ) `
 x )  <->  ( ( X  \  k )  i^i  ( x ( ball `  D ) ( r  /  ( # `  U
) ) ) )  =  (/) ) )
99 blssm 21425 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  ( # `
 U ) )  e.  RR* )  ->  (
x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  X
)
10095, 65, 96, 99syl3anc 1265 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  X )
101 difin0ss 3862 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  \  k
)  i^i  ( x
( ball `  D )
( r  /  ( # `
 U ) ) ) )  =  (/)  ->  ( ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  X  ->  ( x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
) )
102100, 101syl5com 32 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( ( X 
\  k )  i^i  ( x ( ball `  D ) ( r  /  ( # `  U
) ) ) )  =  (/)  ->  ( x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
) )
10398, 102sylbid 219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) ) `
 x )  -> 
( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  k ) )
10494, 103mtod 181 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  -.  ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) ) `
 x ) )
10586, 89ltnled 9784 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( ( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  ) ) `  x )  <  (
r  /  ( # `  U ) )  <->  -.  (
r  /  ( # `  U ) )  <_ 
( ( y  e.  X  |-> inf ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  <  ) ) `  x ) ) )
106104, 105mpbird 236 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |-> inf ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  <  ) ) `  x )  <  ( r  / 
( # `  U ) ) )
10768, 106eqbrtrrd 4444 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  -> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) ,  RR* ,  <  )  <  ( r  /  ( # `
 U ) ) )
10862, 63, 87, 89, 107fsumlt 13853 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  )  <  sum_ k  e.  U  (
r  /  ( # `  U ) ) )
109 oveq1 6310 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  (
y D z )  =  ( x D z ) )
110109mpteq2dv 4509 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
z  e.  ( X 
\  k )  |->  ( y D z ) )  =  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) )
111110rneqd 5079 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) )  =  ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) )
112111infeq1d 7997 . . . . . . . . . . . . . 14  |-  ( y  =  x  -> inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  )  = inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  ) )
113112sumeq2sdv 13763 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  )  =  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  ) )
114 sumex 13747 . . . . . . . . . . . . 13  |-  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  )  e.  _V
115113, 17, 114fvmpt 5962 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  ( F `  x )  =  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k
)  |->  ( x D z ) ) , 
RR* ,  <  ) )
11664, 115syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  =  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  ) )
11760adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( r  /  ( # `
 U ) )  e.  RR+ )
118117rpcnd 11345 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( r  /  ( # `
 U ) )  e.  CC )
119 fsumconst 13844 . . . . . . . . . . . . 13  |-  ( ( U  e.  Fin  /\  ( r  /  ( # `
 U ) )  e.  CC )  ->  sum_ k  e.  U  ( r  /  ( # `  U ) )  =  ( ( # `  U
)  x.  ( r  /  ( # `  U
) ) ) )
12062, 118, 119syl2anc 666 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  sum_ k  e.  U  ( r  /  ( # `  U ) )  =  ( ( # `  U
)  x.  ( r  /  ( # `  U
) ) ) )
121 simplr 761 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  RR+ )
122121rpcnd 11345 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  CC )
12358adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  e.  NN )
124123nncnd 10627 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  e.  CC )
125123nnne0d 10656 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  =/=  0 )
126122, 124, 125divcan2d 10387 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( ( # `  U
)  x.  ( r  /  ( # `  U
) ) )  =  r )
127120, 126eqtr2d 2465 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  =  sum_ k  e.  U  ( r  /  ( # `  U
) ) )
128108, 116, 1273brtr4d 4452 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  <  r )
12919ad2antrr 731 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  F : X --> RR+ )
130129, 64ffvelrnd 6036 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  e.  RR+ )
131130rpred 11343 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  e.  RR )
132121rpred 11343 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  RR )
133131, 132ltnled 9784 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( ( F `  x )  <  r  <->  -.  r  <_  ( F `  x ) ) )
134128, 133mpbid 214 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  -.  r  <_  ( F `
 x ) )
135134expr 619 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  ->  -.  r  <_  ( F `  x ) ) )
13661, 135syl5bir 222 . . . . . . 7  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( -.  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  ->  -.  r  <_  ( F `  x ) ) )
137136con4d 109 . . . . . 6  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  (
r  <_  ( F `  x )  ->  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
)
138137ralimdva 2834 . . . . 5  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( A. x  e.  X  r  <_  ( F `  x )  ->  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
)
139 oveq2 6311 . . . . . . . . 9  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( x
( ball `  D )
d )  =  ( x ( ball `  D
) ( r  / 
( # `  U ) ) ) )
140139sseq1d 3492 . . . . . . . 8  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( (
x ( ball `  D
) d )  C_  u 
<->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
141140rexbidv 2940 . . . . . . 7  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<->  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
142141ralbidv 2865 . . . . . 6  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<-> 
A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
143142rspcev 3183 . . . . 5  |-  ( ( ( r  /  ( # `
 U ) )  e.  RR+  /\  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
14460, 138, 143syl6an 548 . . . 4  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( A. x  e.  X  r  <_  ( F `  x )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
) )
145144rexlimdva 2918 . . 3  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u ) )
14645, 145mpd 15 . 2  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
1479, 146pm2.61dane 2743 1  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1438    e. wcel 1869    =/= wne 2619   A.wral 2776   E.wrex 2777    \ cdif 3434    i^i cin 3436    C_ wss 3437   (/)c0 3762   U.cuni 4217   class class class wbr 4421    |-> cmpt 4480   ran crn 4852    Fn wfn 5594   -->wf 5595   ` cfv 5599  (class class class)co 6303   Fincfn 7575  infcinf 7959   CCcc 9539   RRcr 9540   1c1 9542    x. cmul 9546   RR*cxr 9676    < clt 9677    <_ cle 9678    / cdiv 10271   NNcn 10611   RR+crp 11304   (,)cioo 11637   #chash 12516   sum_csu 13745   topGenctg 15329   *Metcxmt 18948   Metcme 18949   ballcbl 18950   MetOpencmopn 18953    Cn ccn 20232   Compccmp 20393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1666  ax-4 1679  ax-5 1749  ax-6 1795  ax-7 1840  ax-8 1871  ax-9 1873  ax-10 1888  ax-11 1893  ax-12 1906  ax-13 2054  ax-ext 2401  ax-rep 4534  ax-sep 4544  ax-nul 4553  ax-pow 4600  ax-pr 4658  ax-un 6595  ax-inf2 8150  ax-cnex 9597  ax-resscn 9598  ax-1cn 9599  ax-icn 9600  ax-addcl 9601  ax-addrcl 9602  ax-mulcl 9603  ax-mulrcl 9604  ax-mulcom 9605  ax-addass 9606  ax-mulass 9607  ax-distr 9608  ax-i2m1 9609  ax-1ne0 9610  ax-1rid 9611  ax-rnegex 9612  ax-rrecex 9613  ax-cnre 9614  ax-pre-lttri 9615  ax-pre-lttrn 9616  ax-pre-ltadd 9617  ax-pre-mulgt0 9618  ax-pre-sup 9619  ax-addf 9620  ax-mulf 9621
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 984  df-3an 985  df-tru 1441  df-fal 1444  df-ex 1661  df-nf 1665  df-sb 1788  df-eu 2270  df-mo 2271  df-clab 2409  df-cleq 2415  df-clel 2418  df-nfc 2573  df-ne 2621  df-nel 2622  df-ral 2781  df-rex 2782  df-reu 2783  df-rmo 2784  df-rab 2785  df-v 3084  df-sbc 3301  df-csb 3397  df-dif 3440  df-un 3442  df-in 3444  df-ss 3451  df-pss 3453  df-nul 3763  df-if 3911  df-pw 3982  df-sn 3998  df-pr 4000  df-tp 4002  df-op 4004  df-uni 4218  df-int 4254  df-iun 4299  df-iin 4300  df-br 4422  df-opab 4481  df-mpt 4482  df-tr 4517  df-eprel 4762  df-id 4766  df-po 4772  df-so 4773  df-fr 4810  df-se 4811  df-we 4812  df-xp 4857  df-rel 4858  df-cnv 4859  df-co 4860  df-dm 4861  df-rn 4862  df-res 4863  df-ima 4864  df-pred 5397  df-ord 5443  df-on 5444  df-lim 5445  df-suc 5446  df-iota 5563  df-fun 5601  df-fn 5602  df-f 5603  df-f1 5604  df-fo 5605  df-f1o 5606  df-fv 5607  df-isom 5608  df-riota 6265  df-ov 6306  df-oprab 6307  df-mpt2 6308  df-of 6543  df-om 6705  df-1st 6805  df-2nd 6806  df-supp 6924  df-wrecs 7034  df-recs 7096  df-rdg 7134  df-1o 7188  df-2o 7189  df-oadd 7192  df-er 7369  df-ec 7371  df-map 7480  df-ixp 7529  df-en 7576  df-dom 7577  df-sdom 7578  df-fin 7579  df-fsupp 7888  df-fi 7929  df-sup 7960  df-inf 7961  df-oi 8029  df-card 8376  df-cda 8600  df-pnf 9679  df-mnf 9680  df-xr 9681  df-ltxr 9682  df-le 9683  df-sub 9864  df-neg 9865  df-div 10272  df-nn 10612  df-2 10670  df-3 10671  df-4 10672  df-5 10673  df-6 10674  df-7 10675  df-8 10676  df-9 10677  df-10 10678  df-n0 10872  df-z 10940  df-dec 11054  df-uz 11162  df-q 11267  df-rp 11305  df-xneg 11411  df-xadd 11412  df-xmul 11413  df-ioo 11641  df-ico 11643  df-icc 11644  df-fz 11787  df-fzo 11918  df-seq 12215  df-exp 12274  df-hash 12517  df-cj 13156  df-re 13157  df-im 13158  df-sqrt 13292  df-abs 13293  df-clim 13545  df-sum 13746  df-struct 15116  df-ndx 15117  df-slot 15118  df-base 15119  df-sets 15120  df-ress 15121  df-plusg 15196  df-mulr 15197  df-starv 15198  df-sca 15199  df-vsca 15200  df-ip 15201  df-tset 15202  df-ple 15203  df-ds 15205  df-unif 15206  df-hom 15207  df-cco 15208  df-rest 15314  df-topn 15315  df-0g 15333  df-gsum 15334  df-topgen 15335  df-pt 15336  df-prds 15339  df-xrs 15393  df-qtop 15399  df-imas 15400  df-xps 15403  df-mre 15485  df-mrc 15486  df-acs 15488  df-mgm 16481  df-sgrp 16520  df-mnd 16530  df-submnd 16576  df-mulg 16669  df-cntz 16964  df-cmn 17425  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-cnfld 18964  df-top 19913  df-bases 19914  df-topon 19915  df-topsp 19916  df-cld 20026  df-ntr 20027  df-cls 20028  df-cn 20235  df-cnp 20236  df-cmp 20394  df-tx 20569  df-hmeo 20762  df-xms 21327  df-ms 21328  df-tms 21329
This theorem is referenced by:  lebnum  21987
  Copyright terms: Public domain W3C validator