MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem3 Structured version   Visualization version   Unicode version

Theorem lebnumlem3 21991
Description: Lemma for lebnum 21995. By the previous lemmas,  F is continuous and positive on a compact set, so it has a positive minimum  r. Then setting  d  =  r  /  # ( U ), since for each  u  e.  U we have  ball ( x ,  d )  C_  u iff  d  <_  d ( x ,  X  \  u ), if  -.  ball (
x ,  d ) 
C_  u for all  u then summing over  u yields  sum_ u  e.  U
d ( x ,  X  \  u )  =  F ( x )  <  sum_ u  e.  U d  =  r, in contradiction to the assumption that  r is the minimum of  F. (Contributed by Mario Carneiro, 14-Feb-2015.) (Revised by Mario Carneiro, 5-Sep-2015.) (Revised by AV, 30-Sep-2020.)
Hypotheses
Ref Expression
lebnum.j  |-  J  =  ( MetOpen `  D )
lebnum.d  |-  ( ph  ->  D  e.  ( Met `  X ) )
lebnum.c  |-  ( ph  ->  J  e.  Comp )
lebnum.s  |-  ( ph  ->  U  C_  J )
lebnum.u  |-  ( ph  ->  X  =  U. U
)
lebnumlem1.u  |-  ( ph  ->  U  e.  Fin )
lebnumlem1.n  |-  ( ph  ->  -.  X  e.  U
)
lebnumlem1.f  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) )
lebnumlem2.k  |-  K  =  ( topGen `  ran  (,) )
Assertion
Ref Expression
lebnumlem3  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Distinct variable groups:    k, d, u, x, y, z, D    J, d, k, x, y, z    U, d, k, u, x, y, z    x, F    ph, d, k, x, y, z    X, d, k, u, x, y, z    x, K
Allowed substitution hints:    ph( u)    F( y, z, u, k, d)    J( u)    K( y, z, u, k, d)

Proof of Theorem lebnumlem3
Dummy variables  r  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 11306 . . . 4  |-  1  e.  RR+
21ne0ii 3738 . . 3  |-  RR+  =/=  (/)
3 ral0 3874 . . . . 5  |-  A. x  e.  (/)  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
4 simpr 463 . . . . . 6  |-  ( (
ph  /\  X  =  (/) )  ->  X  =  (/) )
54raleqdv 2993 . . . . 5  |-  ( (
ph  /\  X  =  (/) )  ->  ( A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<-> 
A. x  e.  (/)  E. u  e.  U  ( x ( ball `  D
) d )  C_  u ) )
63, 5mpbiri 237 . . . 4  |-  ( (
ph  /\  X  =  (/) )  ->  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
d )  C_  u
)
76ralrimivw 2803 . . 3  |-  ( (
ph  /\  X  =  (/) )  ->  A. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
8 r19.2z 3858 . . 3  |-  ( (
RR+  =/=  (/)  /\  A. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
d )  C_  u
)  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
92, 7, 8sylancr 669 . 2  |-  ( (
ph  /\  X  =  (/) )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
10 lebnum.j . . . . . . 7  |-  J  =  ( MetOpen `  D )
11 lebnum.d . . . . . . 7  |-  ( ph  ->  D  e.  ( Met `  X ) )
12 lebnum.c . . . . . . 7  |-  ( ph  ->  J  e.  Comp )
13 lebnum.s . . . . . . 7  |-  ( ph  ->  U  C_  J )
14 lebnum.u . . . . . . 7  |-  ( ph  ->  X  =  U. U
)
15 lebnumlem1.u . . . . . . 7  |-  ( ph  ->  U  e.  Fin )
16 lebnumlem1.n . . . . . . 7  |-  ( ph  ->  -.  X  e.  U
)
17 lebnumlem1.f . . . . . . 7  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) )
1810, 11, 12, 13, 14, 15, 16, 17lebnumlem1 21989 . . . . . 6  |-  ( ph  ->  F : X --> RR+ )
1918adantr 467 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  F : X
--> RR+ )
20 frn 5735 . . . . 5  |-  ( F : X --> RR+  ->  ran 
F  C_  RR+ )
2119, 20syl 17 . . . 4  |-  ( (
ph  /\  X  =/=  (/) )  ->  ran  F  C_  RR+ )
22 eqid 2451 . . . . . . 7  |-  U. J  =  U. J
23 lebnumlem2.k . . . . . . 7  |-  K  =  ( topGen `  ran  (,) )
2412adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  J  e.  Comp )
2510, 11, 12, 13, 14, 15, 16, 17, 23lebnumlem2 21990 . . . . . . . 8  |-  ( ph  ->  F  e.  ( J  Cn  K ) )
2625adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  F  e.  ( J  Cn  K
) )
27 metxmet 21349 . . . . . . . . . 10  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
2810mopnuni 21456 . . . . . . . . . 10  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
2911, 27, 283syl 18 . . . . . . . . 9  |-  ( ph  ->  X  =  U. J
)
3029neeq1d 2683 . . . . . . . 8  |-  ( ph  ->  ( X  =/=  (/)  <->  U. J  =/=  (/) ) )
3130biimpa 487 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  U. J  =/=  (/) )
3222, 23, 24, 26, 31evth2 21988 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. w  e.  U. J A. x  e.  U. J ( F `
 w )  <_ 
( F `  x
) )
3329adantr 467 . . . . . . 7  |-  ( (
ph  /\  X  =/=  (/) )  ->  X  =  U. J )
34 raleq 2987 . . . . . . . 8  |-  ( X  =  U. J  -> 
( A. x  e.  X  ( F `  w )  <_  ( F `  x )  <->  A. x  e.  U. J
( F `  w
)  <_  ( F `  x ) ) )
3534rexeqbi1dv 2996 . . . . . . 7  |-  ( X  =  U. J  -> 
( E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )  <->  E. w  e.  U. J A. x  e.  U. J
( F `  w
)  <_  ( F `  x ) ) )
3633, 35syl 17 . . . . . 6  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x
)  <->  E. w  e.  U. J A. x  e.  U. J ( F `  w )  <_  ( F `  x )
) )
3732, 36mpbird 236 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )
)
38 ffn 5728 . . . . . 6  |-  ( F : X --> RR+  ->  F  Fn  X )
39 breq1 4405 . . . . . . . 8  |-  ( r  =  ( F `  w )  ->  (
r  <_  ( F `  x )  <->  ( F `  w )  <_  ( F `  x )
) )
4039ralbidv 2827 . . . . . . 7  |-  ( r  =  ( F `  w )  ->  ( A. x  e.  X  r  <_  ( F `  x )  <->  A. x  e.  X  ( F `  w )  <_  ( F `  x )
) )
4140rexrn 6024 . . . . . 6  |-  ( F  Fn  X  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x )  <->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x )
) )
4219, 38, 413syl 18 . . . . 5  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x
)  <->  E. w  e.  X  A. x  e.  X  ( F `  w )  <_  ( F `  x ) ) )
4337, 42mpbird 236 . . . 4  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x ) )
44 ssrexv 3494 . . . 4  |-  ( ran 
F  C_  RR+  ->  ( E. r  e.  ran  F A. x  e.  X  r  <_  ( F `  x )  ->  E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )
) )
4521, 43, 44sylc 62 . . 3  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )
)
46 simpr 463 . . . . . 6  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  r  e.  RR+ )
4714ad2antrr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  X  =  U. U )
48 simplr 762 . . . . . . . . . 10  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  X  =/=  (/) )
4947, 48eqnetrrd 2692 . . . . . . . . 9  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U. U  =/=  (/) )
50 unieq 4206 . . . . . . . . . . 11  |-  ( U  =  (/)  ->  U. U  =  U. (/) )
51 uni0 4225 . . . . . . . . . . 11  |-  U. (/)  =  (/)
5250, 51syl6eq 2501 . . . . . . . . . 10  |-  ( U  =  (/)  ->  U. U  =  (/) )
5352necon3i 2656 . . . . . . . . 9  |-  ( U. U  =/=  (/)  ->  U  =/=  (/) )
5449, 53syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U  =/=  (/) )
5515ad2antrr 732 . . . . . . . . 9  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  U  e.  Fin )
56 hashnncl 12547 . . . . . . . . 9  |-  ( U  e.  Fin  ->  (
( # `  U )  e.  NN  <->  U  =/=  (/) ) )
5755, 56syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  (
( # `  U )  e.  NN  <->  U  =/=  (/) ) )
5854, 57mpbird 236 . . . . . . 7  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( # `
 U )  e.  NN )
5958nnrpd 11339 . . . . . 6  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( # `
 U )  e.  RR+ )
6046, 59rpdivcld 11358 . . . . 5  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  (
r  /  ( # `  U ) )  e.  RR+ )
61 ralnex 2834 . . . . . . . 8  |-  ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  -.  E. u  e.  U  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
6255adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  U  e.  Fin )
6354adantr 467 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  U  =/=  (/) )
64 simprl 764 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  x  e.  X )
6564adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  x  e.  X )
66 eqid 2451 . . . . . . . . . . . . . . 15  |-  ( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  ) )  =  ( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
)
6766metdsval 21864 . . . . . . . . . . . . . 14  |-  ( x  e.  X  ->  (
( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
) `  x )  = inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) ,  RR* ,  <  )
)
6865, 67syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |-> inf ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  <  ) ) `  x )  = inf ( ran  (
z  e.  ( X 
\  k )  |->  ( x D z ) ) ,  RR* ,  <  ) )
6911ad2antrr 732 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  D  e.  ( Met `  X
) )
7069ad2antrr 732 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  D  e.  ( Met `  X ) )
71 difssd 3561 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( X  \  k
)  C_  X )
72 elssuni 4227 . . . . . . . . . . . . . . . . . 18  |-  ( k  e.  U  ->  k  C_ 
U. U )
7372adantl 468 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  C_  U. U )
7447ad2antrr 732 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  X  =  U. U
)
7573, 74sseqtr4d 3469 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  C_  X )
76 eleq1 2517 . . . . . . . . . . . . . . . . . . . . 21  |-  ( k  =  X  ->  (
k  e.  U  <->  X  e.  U ) )
7776notbid 296 . . . . . . . . . . . . . . . . . . . 20  |-  ( k  =  X  ->  ( -.  k  e.  U  <->  -.  X  e.  U ) )
7816, 77syl5ibrcom 226 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( k  =  X  ->  -.  k  e.  U ) )
7978necon2ad 2639 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( k  e.  U  ->  k  =/=  X ) )
8079ad3antrrr 736 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( k  e.  U  ->  k  =/=  X ) )
8180imp 431 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  k  =/=  X )
82 pssdifn0 3827 . . . . . . . . . . . . . . . 16  |-  ( ( k  C_  X  /\  k  =/=  X )  -> 
( X  \  k
)  =/=  (/) )
8375, 81, 82syl2anc 667 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( X  \  k
)  =/=  (/) )
8466metdsre 21870 . . . . . . . . . . . . . . 15  |-  ( ( D  e.  ( Met `  X )  /\  ( X  \  k )  C_  X  /\  ( X  \ 
k )  =/=  (/) )  -> 
( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
) : X --> RR )
8570, 71, 83, 84syl3anc 1268 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
) : X --> RR )
8685, 65ffvelrnd 6023 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |-> inf ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  <  ) ) `  x )  e.  RR )
8768, 86eqeltrrd 2530 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  -> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) ,  RR* ,  <  )  e.  RR )
8860ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR+ )
8988rpred 11341 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR )
90 simprr 766 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u )
91 sseq2 3454 . . . . . . . . . . . . . . . . . 18  |-  ( u  =  k  ->  (
( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  k ) )
9291notbid 296 . . . . . . . . . . . . . . . . 17  |-  ( u  =  k  ->  ( -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u 
<->  -.  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  k )
)
9392rspccva 3149 . . . . . . . . . . . . . . . 16  |-  ( ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  /\  k  e.  U
)  ->  -.  (
x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
)
9490, 93sylan 474 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  -.  ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  k )
9570, 27syl 17 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  D  e.  ( *Met `  X ) )
9688rpxrd 11342 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( r  /  ( # `
 U ) )  e.  RR* )
9766metdsge 21866 . . . . . . . . . . . . . . . . 17  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( X  \  k )  C_  X  /\  x  e.  X
)  /\  ( r  /  ( # `  U
) )  e.  RR* )  ->  ( ( r  /  ( # `  U
) )  <_  (
( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  <  )
) `  x )  <->  ( ( X  \  k
)  i^i  ( x
( ball `  D )
( r  /  ( # `
 U ) ) ) )  =  (/) ) )
9895, 71, 65, 96, 97syl31anc 1271 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) ) `
 x )  <->  ( ( X  \  k )  i^i  ( x ( ball `  D ) ( r  /  ( # `  U
) ) ) )  =  (/) ) )
99 blssm 21433 . . . . . . . . . . . . . . . . . 18  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  ( r  /  ( # `
 U ) )  e.  RR* )  ->  (
x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  X
)
10095, 65, 96, 99syl3anc 1268 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  X )
101 difin0ss 3833 . . . . . . . . . . . . . . . . 17  |-  ( ( ( X  \  k
)  i^i  ( x
( ball `  D )
( r  /  ( # `
 U ) ) ) )  =  (/)  ->  ( ( x (
ball `  D )
( r  /  ( # `
 U ) ) )  C_  X  ->  ( x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
) )
102100, 101syl5com 31 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( ( X 
\  k )  i^i  ( x ( ball `  D ) ( r  /  ( # `  U
) ) ) )  =  (/)  ->  ( x ( ball `  D
) ( r  / 
( # `  U ) ) )  C_  k
) )
10398, 102sylbid 219 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) ) `
 x )  -> 
( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  k ) )
10494, 103mtod 181 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  -.  ( r  / 
( # `  U ) )  <_  ( (
y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  <  ) ) `
 x ) )
10586, 89ltnled 9782 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( ( y  e.  X  |-> inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  ) ) `  x )  <  (
r  /  ( # `  U ) )  <->  -.  (
r  /  ( # `  U ) )  <_ 
( ( y  e.  X  |-> inf ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  <  ) ) `  x ) ) )
106104, 105mpbird 236 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  ->  ( ( y  e.  X  |-> inf ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  <  ) ) `  x )  <  ( r  / 
( # `  U ) ) )
10768, 106eqbrtrrd 4425 . . . . . . . . . . . 12  |-  ( ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  ( x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  /\  k  e.  U )  -> inf ( ran  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) ,  RR* ,  <  )  <  ( r  /  ( # `
 U ) ) )
10862, 63, 87, 89, 107fsumlt 13860 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  )  <  sum_ k  e.  U  (
r  /  ( # `  U ) ) )
109 oveq1 6297 . . . . . . . . . . . . . . . . 17  |-  ( y  =  x  ->  (
y D z )  =  ( x D z ) )
110109mpteq2dv 4490 . . . . . . . . . . . . . . . 16  |-  ( y  =  x  ->  (
z  e.  ( X 
\  k )  |->  ( y D z ) )  =  ( z  e.  ( X  \ 
k )  |->  ( x D z ) ) )
111110rneqd 5062 . . . . . . . . . . . . . . 15  |-  ( y  =  x  ->  ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) )  =  ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) )
112111infeq1d 7993 . . . . . . . . . . . . . 14  |-  ( y  =  x  -> inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  )  = inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  ) )
113112sumeq2sdv 13770 . . . . . . . . . . . . 13  |-  ( y  =  x  ->  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  <  )  =  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  ) )
114 sumex 13754 . . . . . . . . . . . . 13  |-  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  )  e.  _V
115113, 17, 114fvmpt 5948 . . . . . . . . . . . 12  |-  ( x  e.  X  ->  ( F `  x )  =  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k
)  |->  ( x D z ) ) , 
RR* ,  <  ) )
11664, 115syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  =  sum_ k  e.  U inf ( ran  ( z  e.  ( X  \  k ) 
|->  ( x D z ) ) ,  RR* ,  <  ) )
11760adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( r  /  ( # `
 U ) )  e.  RR+ )
118117rpcnd 11343 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( r  /  ( # `
 U ) )  e.  CC )
119 fsumconst 13851 . . . . . . . . . . . . 13  |-  ( ( U  e.  Fin  /\  ( r  /  ( # `
 U ) )  e.  CC )  ->  sum_ k  e.  U  ( r  /  ( # `  U ) )  =  ( ( # `  U
)  x.  ( r  /  ( # `  U
) ) ) )
12062, 118, 119syl2anc 667 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  sum_ k  e.  U  ( r  /  ( # `  U ) )  =  ( ( # `  U
)  x.  ( r  /  ( # `  U
) ) ) )
121 simplr 762 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  RR+ )
122121rpcnd 11343 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  CC )
12358adantr 467 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  e.  NN )
124123nncnd 10625 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  e.  CC )
125123nnne0d 10654 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( # `  U )  =/=  0 )
126122, 124, 125divcan2d 10385 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( ( # `  U
)  x.  ( r  /  ( # `  U
) ) )  =  r )
127120, 126eqtr2d 2486 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  =  sum_ k  e.  U  ( r  /  ( # `  U
) ) )
128108, 116, 1273brtr4d 4433 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  <  r )
12919ad2antrr 732 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  F : X --> RR+ )
130129, 64ffvelrnd 6023 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  e.  RR+ )
131130rpred 11341 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( F `  x
)  e.  RR )
132121rpred 11341 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
r  e.  RR )
133131, 132ltnled 9782 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  -> 
( ( F `  x )  <  r  <->  -.  r  <_  ( F `  x ) ) )
134128, 133mpbid 214 . . . . . . . . 9  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  (
x  e.  X  /\  A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )  ->  -.  r  <_  ( F `
 x ) )
135134expr 620 . . . . . . . 8  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( A. u  e.  U  -.  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  ->  -.  r  <_  ( F `  x ) ) )
13661, 135syl5bir 222 . . . . . . 7  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  ( -.  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u  ->  -.  r  <_  ( F `  x ) ) )
137136con4d 109 . . . . . 6  |-  ( ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  /\  x  e.  X )  ->  (
r  <_  ( F `  x )  ->  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
)
138137ralimdva 2796 . . . . 5  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( A. x  e.  X  r  <_  ( F `  x )  ->  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )
)
139 oveq2 6298 . . . . . . . . 9  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( x
( ball `  D )
d )  =  ( x ( ball `  D
) ( r  / 
( # `  U ) ) ) )
140139sseq1d 3459 . . . . . . . 8  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( (
x ( ball `  D
) d )  C_  u 
<->  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
141140rexbidv 2901 . . . . . . 7  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<->  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
142141ralbidv 2827 . . . . . 6  |-  ( d  =  ( r  / 
( # `  U ) )  ->  ( A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u 
<-> 
A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) ( r  /  ( # `  U
) ) )  C_  u ) )
143142rspcev 3150 . . . . 5  |-  ( ( ( r  /  ( # `
 U ) )  e.  RR+  /\  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
( r  /  ( # `
 U ) ) )  C_  u )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
14460, 138, 143syl6an 548 . . . 4  |-  ( ( ( ph  /\  X  =/=  (/) )  /\  r  e.  RR+ )  ->  ( A. x  e.  X  r  <_  ( F `  x )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
) )
145144rexlimdva 2879 . . 3  |-  ( (
ph  /\  X  =/=  (/) )  ->  ( E. r  e.  RR+  A. x  e.  X  r  <_  ( F `  x )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u ) )
14645, 145mpd 15 . 2  |-  ( (
ph  /\  X  =/=  (/) )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
1479, 146pm2.61dane 2711 1  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1444    e. wcel 1887    =/= wne 2622   A.wral 2737   E.wrex 2738    \ cdif 3401    i^i cin 3403    C_ wss 3404   (/)c0 3731   U.cuni 4198   class class class wbr 4402    |-> cmpt 4461   ran crn 4835    Fn wfn 5577   -->wf 5578   ` cfv 5582  (class class class)co 6290   Fincfn 7569  infcinf 7955   CCcc 9537   RRcr 9538   1c1 9540    x. cmul 9544   RR*cxr 9674    < clt 9675    <_ cle 9676    / cdiv 10269   NNcn 10609   RR+crp 11302   (,)cioo 11635   #chash 12515   sum_csu 13752   topGenctg 15336   *Metcxmt 18955   Metcme 18956   ballcbl 18957   MetOpencmopn 18960    Cn ccn 20240   Compccmp 20401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1669  ax-4 1682  ax-5 1758  ax-6 1805  ax-7 1851  ax-8 1889  ax-9 1896  ax-10 1915  ax-11 1920  ax-12 1933  ax-13 2091  ax-ext 2431  ax-rep 4515  ax-sep 4525  ax-nul 4534  ax-pow 4581  ax-pr 4639  ax-un 6583  ax-inf2 8146  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-pre-sup 9617  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 986  df-3an 987  df-tru 1447  df-fal 1450  df-ex 1664  df-nf 1668  df-sb 1798  df-eu 2303  df-mo 2304  df-clab 2438  df-cleq 2444  df-clel 2447  df-nfc 2581  df-ne 2624  df-nel 2625  df-ral 2742  df-rex 2743  df-reu 2744  df-rmo 2745  df-rab 2746  df-v 3047  df-sbc 3268  df-csb 3364  df-dif 3407  df-un 3409  df-in 3411  df-ss 3418  df-pss 3420  df-nul 3732  df-if 3882  df-pw 3953  df-sn 3969  df-pr 3971  df-tp 3973  df-op 3975  df-uni 4199  df-int 4235  df-iun 4280  df-iin 4281  df-br 4403  df-opab 4462  df-mpt 4463  df-tr 4498  df-eprel 4745  df-id 4749  df-po 4755  df-so 4756  df-fr 4793  df-se 4794  df-we 4795  df-xp 4840  df-rel 4841  df-cnv 4842  df-co 4843  df-dm 4844  df-rn 4845  df-res 4846  df-ima 4847  df-pred 5380  df-ord 5426  df-on 5427  df-lim 5428  df-suc 5429  df-iota 5546  df-fun 5584  df-fn 5585  df-f 5586  df-f1 5587  df-fo 5588  df-f1o 5589  df-fv 5590  df-isom 5591  df-riota 6252  df-ov 6293  df-oprab 6294  df-mpt2 6295  df-of 6531  df-om 6693  df-1st 6793  df-2nd 6794  df-supp 6915  df-wrecs 7028  df-recs 7090  df-rdg 7128  df-1o 7182  df-2o 7183  df-oadd 7186  df-er 7363  df-ec 7365  df-map 7474  df-ixp 7523  df-en 7570  df-dom 7571  df-sdom 7572  df-fin 7573  df-fsupp 7884  df-fi 7925  df-sup 7956  df-inf 7957  df-oi 8025  df-card 8373  df-cda 8598  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-rp 11303  df-xneg 11409  df-xadd 11410  df-xmul 11411  df-ioo 11639  df-ico 11641  df-icc 11642  df-fz 11785  df-fzo 11916  df-seq 12214  df-exp 12273  df-hash 12516  df-cj 13162  df-re 13163  df-im 13164  df-sqrt 13298  df-abs 13299  df-clim 13552  df-sum 13753  df-struct 15123  df-ndx 15124  df-slot 15125  df-base 15126  df-sets 15127  df-ress 15128  df-plusg 15203  df-mulr 15204  df-starv 15205  df-sca 15206  df-vsca 15207  df-ip 15208  df-tset 15209  df-ple 15210  df-ds 15212  df-unif 15213  df-hom 15214  df-cco 15215  df-rest 15321  df-topn 15322  df-0g 15340  df-gsum 15341  df-topgen 15342  df-pt 15343  df-prds 15346  df-xrs 15400  df-qtop 15406  df-imas 15407  df-xps 15410  df-mre 15492  df-mrc 15493  df-acs 15495  df-mgm 16488  df-sgrp 16527  df-mnd 16537  df-submnd 16583  df-mulg 16676  df-cntz 16971  df-cmn 17432  df-psmet 18962  df-xmet 18963  df-met 18964  df-bl 18965  df-mopn 18966  df-cnfld 18971  df-top 19921  df-bases 19922  df-topon 19923  df-topsp 19924  df-cld 20034  df-ntr 20035  df-cls 20036  df-cn 20243  df-cnp 20244  df-cmp 20402  df-tx 20577  df-hmeo 20770  df-xms 21335  df-ms 21336  df-tms 21337
This theorem is referenced by:  lebnum  21995
  Copyright terms: Public domain W3C validator