MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem1OLD Structured version   Visualization version   Unicode version

Theorem lebnumlem1OLD 21985
Description: Lemma for lebnum 21988. The function  F measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015.) Obsolete version of lebnumlem1 21982 as of 20-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
lebnum.j  |-  J  =  ( MetOpen `  D )
lebnum.d  |-  ( ph  ->  D  e.  ( Met `  X ) )
lebnum.c  |-  ( ph  ->  J  e.  Comp )
lebnum.s  |-  ( ph  ->  U  C_  J )
lebnum.u  |-  ( ph  ->  X  =  U. U
)
lebnumlem1OLD.u  |-  ( ph  ->  U  e.  Fin )
lebnumlem1OLD.n  |-  ( ph  ->  -.  X  e.  U
)
lebnumlem1OLD.f  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
Assertion
Ref Expression
lebnumlem1OLD  |-  ( ph  ->  F : X --> RR+ )
Distinct variable groups:    y, k,
z, D    k, J, y, z    U, k, y, z    ph, k, y, z   
k, X, y, z
Allowed substitution hints:    F( y, z, k)

Proof of Theorem lebnumlem1OLD
Dummy variables  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnumlem1OLD.u . . . . 5  |-  ( ph  ->  U  e.  Fin )
21adantr 467 . . . 4  |-  ( (
ph  /\  y  e.  X )  ->  U  e.  Fin )
3 lebnum.d . . . . . . . 8  |-  ( ph  ->  D  e.  ( Met `  X ) )
43ad2antrr 731 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  D  e.  ( Met `  X
) )
5 difssd 3560 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  ( X  \  k )  C_  X )
6 lebnum.s . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  J )
76adantr 467 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  X )  ->  U  C_  J )
87sselda 3431 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  k  e.  J )
9 elssuni 4226 . . . . . . . . . 10  |-  ( k  e.  J  ->  k  C_ 
U. J )
108, 9syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  k  C_ 
U. J )
11 metxmet 21342 . . . . . . . . . . . 12  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
123, 11syl 17 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  ( *Met `  X ) )
13 lebnum.j . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  D )
1413mopnuni 21449 . . . . . . . . . . 11  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
1512, 14syl 17 . . . . . . . . . 10  |-  ( ph  ->  X  =  U. J
)
1615ad2antrr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  X  =  U. J )
1710, 16sseqtr4d 3468 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  k  C_  X )
18 lebnumlem1OLD.n . . . . . . . . . . . 12  |-  ( ph  ->  -.  X  e.  U
)
19 eleq1 2516 . . . . . . . . . . . . 13  |-  ( k  =  X  ->  (
k  e.  U  <->  X  e.  U ) )
2019notbid 296 . . . . . . . . . . . 12  |-  ( k  =  X  ->  ( -.  k  e.  U  <->  -.  X  e.  U ) )
2118, 20syl5ibrcom 226 . . . . . . . . . . 11  |-  ( ph  ->  ( k  =  X  ->  -.  k  e.  U ) )
2221necon2ad 2638 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  U  ->  k  =/=  X ) )
2322adantr 467 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  X )  ->  (
k  e.  U  -> 
k  =/=  X ) )
2423imp 431 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  k  =/=  X )
25 pssdifn0 3826 . . . . . . . 8  |-  ( ( k  C_  X  /\  k  =/=  X )  -> 
( X  \  k
)  =/=  (/) )
2617, 24, 25syl2anc 666 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  ( X  \  k )  =/=  (/) )
27 eqid 2450 . . . . . . . 8  |-  ( y  e.  X  |->  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )  =  ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
2827metdsreOLD 21878 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  ( X  \  k )  C_  X  /\  ( X  \ 
k )  =/=  (/) )  -> 
( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
294, 5, 26, 28syl3anc 1267 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  (
y  e.  X  |->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
3027fmpt 6041 . . . . . 6  |-  ( A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  RR  <->  ( y  e.  X  |->  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
3129, 30sylibr 216 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR )
32 simplr 761 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  y  e.  X )
33 rsp 2753 . . . . 5  |-  ( A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  RR  ->  (
y  e.  X  ->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR ) )
3431, 32, 33sylc 62 . . . 4  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  RR )
352, 34fsumrecl 13793 . . 3  |-  ( (
ph  /\  y  e.  X )  ->  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR )
36 lebnum.u . . . . . . 7  |-  ( ph  ->  X  =  U. U
)
3736eleq2d 2513 . . . . . 6  |-  ( ph  ->  ( y  e.  X  <->  y  e.  U. U ) )
3837biimpa 487 . . . . 5  |-  ( (
ph  /\  y  e.  X )  ->  y  e.  U. U )
39 eluni2 4201 . . . . 5  |-  ( y  e.  U. U  <->  E. m  e.  U  y  e.  m )
4038, 39sylib 200 . . . 4  |-  ( (
ph  /\  y  e.  X )  ->  E. m  e.  U  y  e.  m )
41 0red 9641 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  e.  RR )
42 simplr 761 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  y  e.  X )
43 eqid 2450 . . . . . . . 8  |-  ( w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( w D z ) ) ,  RR* ,  `'  <  ) )  =  ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) )
4443metdsvalOLD 21872 . . . . . . 7  |-  ( y  e.  X  ->  (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  =  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )
4542, 44syl 17 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y )  =  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )
463ad2antrr 731 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  D  e.  ( Met `  X ) )
47 difssd 3560 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( X  \  m )  C_  X
)
486ad2antrr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  U  C_  J
)
49 simprl 763 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  e.  U )
5048, 49sseldd 3432 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  e.  J )
51 elssuni 4226 . . . . . . . . . . 11  |-  ( m  e.  J  ->  m  C_ 
U. J )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  C_  U. J
)
5346, 11, 143syl 18 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  X  =  U. J )
5452, 53sseqtr4d 3468 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  C_  X
)
55 eleq1 2516 . . . . . . . . . . . . . 14  |-  ( m  =  X  ->  (
m  e.  U  <->  X  e.  U ) )
5655notbid 296 . . . . . . . . . . . . 13  |-  ( m  =  X  ->  ( -.  m  e.  U  <->  -.  X  e.  U ) )
5718, 56syl5ibrcom 226 . . . . . . . . . . . 12  |-  ( ph  ->  ( m  =  X  ->  -.  m  e.  U ) )
5857necon2ad 2638 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  U  ->  m  =/=  X ) )
5958ad2antrr 731 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( m  e.  U  ->  m  =/= 
X ) )
6049, 59mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  =/=  X )
61 pssdifn0 3826 . . . . . . . . 9  |-  ( ( m  C_  X  /\  m  =/=  X )  -> 
( X  \  m
)  =/=  (/) )
6254, 60, 61syl2anc 666 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( X  \  m )  =/=  (/) )
6343metdsreOLD 21878 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  ( X  \  m )  C_  X  /\  ( X  \  m )  =/=  (/) )  -> 
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
6446, 47, 62, 63syl3anc 1267 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( w D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
6564, 42ffvelrnd 6021 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y )  e.  RR )
6645, 65eqeltrrd 2529 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR )
6735adantr 467 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR )
6812ad2antrr 731 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  D  e.  ( *Met `  X
) )
6943metdsfOLD 21873 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( X  \  m )  C_  X
)  ->  ( w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( w D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
7068, 47, 69syl2anc 666 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( w D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
7170, 42ffvelrnd 6021 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y )  e.  ( 0 [,] +oo ) )
72 elxrge0 11738 . . . . . . . . 9  |-  ( ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  e.  ( 0 [,] +oo )  <->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  e.  RR*  /\  0  <_  ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
) ) )
7371, 72sylib 200 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  e.  RR*  /\  0  <_  ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
) ) )
7473simprd 465 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  <_  ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
) )
75 elndif 3556 . . . . . . . . . 10  |-  ( y  e.  m  ->  -.  y  e.  ( X  \  m ) )
7675ad2antll 734 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  -.  y  e.  ( X  \  m
) )
7753difeq1d 3549 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( X  \  m )  =  ( U. J  \  m
) )
7813mopntop 21448 . . . . . . . . . . . . 13  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
7968, 78syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  J  e.  Top )
80 eqid 2450 . . . . . . . . . . . . 13  |-  U. J  =  U. J
8180opncld 20041 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  m  e.  J )  ->  ( U. J  \  m )  e.  (
Clsd `  J )
)
8279, 50, 81syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( U. J  \  m )  e.  ( Clsd `  J
) )
8377, 82eqeltrd 2528 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( X  \  m )  e.  (
Clsd `  J )
)
84 cldcls 20050 . . . . . . . . . 10  |-  ( ( X  \  m )  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  ( X  \  m
) )  =  ( X  \  m ) )
8583, 84syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( ( cls `  J ) `  ( X  \  m
) )  =  ( X  \  m ) )
8676, 85neleqtrrd 2550 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  -.  y  e.  ( ( cls `  J
) `  ( X  \  m ) ) )
8743, 13metdseq0OLD 21879 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( X  \  m )  C_  X  /\  y  e.  X
)  ->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  =  0  <->  y  e.  ( ( cls `  J
) `  ( X  \  m ) ) ) )
8868, 47, 42, 87syl3anc 1267 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  =  0  <->  y  e.  ( ( cls `  J
) `  ( X  \  m ) ) ) )
8988necon3abid 2659 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  =/=  0  <->  -.  y  e.  ( ( cls `  J ) `  ( X  \  m
) ) ) )
9086, 89mpbird 236 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y )  =/=  0 )
9165, 74, 90ne0gt0d 9769 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  <  ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
) )
9291, 45breqtrd 4426 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  <  sup ( ran  ( z  e.  ( X  \  m )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
931ad2antrr 731 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  U  e.  Fin )
9434adantlr 720 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  X )  /\  ( m  e.  U  /\  y  e.  m
) )  /\  k  e.  U )  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  RR )
9512ad2antrr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  D  e.  ( *Met `  X ) )
9627metdsfOLD 21873 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( X  \ 
k )  C_  X
)  ->  ( y  e.  X  |->  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
9795, 5, 96syl2anc 666 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  (
y  e.  X  |->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
9827fmpt 6041 . . . . . . . . . . 11  |-  ( A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] +oo )  <->  ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
9997, 98sylibr 216 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  ( 0 [,] +oo )
)
100 rsp 2753 . . . . . . . . . 10  |-  ( A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] +oo )  ->  ( y  e.  X  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] +oo ) ) )
10199, 32, 100sylc 62 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] +oo ) )
102 elxrge0 11738 . . . . . . . . 9  |-  ( sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  ( 0 [,] +oo )  <->  ( sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR*  /\  0  <_  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) ) )
103101, 102sylib 200 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  ( sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR*  /\  0  <_  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) )
104103simprd 465 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  0  <_  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
105104adantlr 720 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  X )  /\  ( m  e.  U  /\  y  e.  m
) )  /\  k  e.  U )  ->  0  <_  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
106 difeq2 3544 . . . . . . . . 9  |-  ( k  =  m  ->  ( X  \  k )  =  ( X  \  m
) )
107106mpteq1d 4483 . . . . . . . 8  |-  ( k  =  m  ->  (
z  e.  ( X 
\  k )  |->  ( y D z ) )  =  ( z  e.  ( X  \  m )  |->  ( y D z ) ) )
108107rneqd 5061 . . . . . . 7  |-  ( k  =  m  ->  ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) )  =  ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) )
109108supeq1d 7957 . . . . . 6  |-  ( k  =  m  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  =  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )
11093, 94, 105, 109, 49fsumge1 13850 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  <_  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )
11141, 66, 67, 92, 110ltletrd 9792 . . . 4  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  <  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  ) )
11240, 111rexlimddv 2882 . . 3  |-  ( (
ph  /\  y  e.  X )  ->  0  <  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
11335, 112elrpd 11335 . 2  |-  ( (
ph  /\  y  e.  X )  ->  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR+ )
114 lebnumlem1OLD.f . 2  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
115113, 114fmptd 6044 1  |-  ( ph  ->  F : X --> RR+ )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737    \ cdif 3400    C_ wss 3403   (/)c0 3730   U.cuni 4197   class class class wbr 4401    |-> cmpt 4460   `'ccnv 4832   ran crn 4834   -->wf 5577   ` cfv 5581  (class class class)co 6288   Fincfn 7566   supcsup 7951   RRcr 9535   0cc0 9536   +oocpnf 9669   RR*cxr 9671    < clt 9672    <_ cle 9673   RR+crp 11299   [,]cicc 11635   sum_csu 13745   *Metcxmt 18948   Metcme 18949   MetOpencmopn 18953   Topctop 19910   Clsdccld 20024   clsccl 20026   Compccmp 20394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-inf2 8143  ax-cnex 9592  ax-resscn 9593  ax-1cn 9594  ax-icn 9595  ax-addcl 9596  ax-addrcl 9597  ax-mulcl 9598  ax-mulrcl 9599  ax-mulcom 9600  ax-addass 9601  ax-mulass 9602  ax-distr 9603  ax-i2m1 9604  ax-1ne0 9605  ax-1rid 9606  ax-rnegex 9607  ax-rrecex 9608  ax-cnre 9609  ax-pre-lttri 9610  ax-pre-lttrn 9611  ax-pre-ltadd 9612  ax-pre-mulgt0 9613  ax-pre-sup 9614
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-fal 1449  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-int 4234  df-iun 4279  df-iin 4280  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-isom 5590  df-riota 6250  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-om 6690  df-1st 6790  df-2nd 6791  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-1o 7179  df-oadd 7183  df-er 7360  df-ec 7362  df-map 7471  df-en 7567  df-dom 7568  df-sdom 7569  df-fin 7570  df-sup 7953  df-inf 7954  df-oi 8022  df-card 8370  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-sub 9859  df-neg 9860  df-div 10267  df-nn 10607  df-2 10665  df-3 10666  df-n0 10867  df-z 10935  df-uz 11157  df-q 11262  df-rp 11300  df-xneg 11406  df-xadd 11407  df-xmul 11408  df-ico 11638  df-icc 11639  df-fz 11782  df-fzo 11913  df-seq 12211  df-exp 12270  df-hash 12513  df-cj 13155  df-re 13156  df-im 13157  df-sqrt 13291  df-abs 13292  df-clim 13545  df-sum 13746  df-topgen 15335  df-psmet 18955  df-xmet 18956  df-met 18957  df-bl 18958  df-mopn 18959  df-top 19914  df-bases 19915  df-topon 19916  df-cld 20027  df-ntr 20028  df-cls 20029
This theorem is referenced by:  lebnumlem2OLD  21986  lebnumlem3OLD  21987
  Copyright terms: Public domain W3C validator