MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumlem1OLD Structured version   Visualization version   Unicode version

Theorem lebnumlem1OLD 22070
Description: Lemma for lebnum 22073. The function  F measures the sum of all of the distances to escape the sets of the cover. Since by assumption it is a cover, there is at least one set which covers a given point, and since it is open, the point is a positive distance from the edge of the set. Thus, the sum is a strictly positive number. (Contributed by Mario Carneiro, 14-Feb-2015.) Obsolete version of lebnumlem1 22067 as of 20-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
lebnum.j  |-  J  =  ( MetOpen `  D )
lebnum.d  |-  ( ph  ->  D  e.  ( Met `  X ) )
lebnum.c  |-  ( ph  ->  J  e.  Comp )
lebnum.s  |-  ( ph  ->  U  C_  J )
lebnum.u  |-  ( ph  ->  X  =  U. U
)
lebnumlem1OLD.u  |-  ( ph  ->  U  e.  Fin )
lebnumlem1OLD.n  |-  ( ph  ->  -.  X  e.  U
)
lebnumlem1OLD.f  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
Assertion
Ref Expression
lebnumlem1OLD  |-  ( ph  ->  F : X --> RR+ )
Distinct variable groups:    y, k,
z, D    k, J, y, z    U, k, y, z    ph, k, y, z   
k, X, y, z
Allowed substitution hints:    F( y, z, k)

Proof of Theorem lebnumlem1OLD
Dummy variables  m  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnumlem1OLD.u . . . . 5  |-  ( ph  ->  U  e.  Fin )
21adantr 472 . . . 4  |-  ( (
ph  /\  y  e.  X )  ->  U  e.  Fin )
3 lebnum.d . . . . . . . 8  |-  ( ph  ->  D  e.  ( Met `  X ) )
43ad2antrr 740 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  D  e.  ( Met `  X
) )
5 difssd 3550 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  ( X  \  k )  C_  X )
6 lebnum.s . . . . . . . . . . . 12  |-  ( ph  ->  U  C_  J )
76adantr 472 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  X )  ->  U  C_  J )
87sselda 3418 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  k  e.  J )
9 elssuni 4219 . . . . . . . . . 10  |-  ( k  e.  J  ->  k  C_ 
U. J )
108, 9syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  k  C_ 
U. J )
11 metxmet 21427 . . . . . . . . . . . 12  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
123, 11syl 17 . . . . . . . . . . 11  |-  ( ph  ->  D  e.  ( *Met `  X ) )
13 lebnum.j . . . . . . . . . . . 12  |-  J  =  ( MetOpen `  D )
1413mopnuni 21534 . . . . . . . . . . 11  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
1512, 14syl 17 . . . . . . . . . 10  |-  ( ph  ->  X  =  U. J
)
1615ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  X  =  U. J )
1710, 16sseqtr4d 3455 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  k  C_  X )
18 lebnumlem1OLD.n . . . . . . . . . . . 12  |-  ( ph  ->  -.  X  e.  U
)
19 eleq1 2537 . . . . . . . . . . . . 13  |-  ( k  =  X  ->  (
k  e.  U  <->  X  e.  U ) )
2019notbid 301 . . . . . . . . . . . 12  |-  ( k  =  X  ->  ( -.  k  e.  U  <->  -.  X  e.  U ) )
2118, 20syl5ibrcom 230 . . . . . . . . . . 11  |-  ( ph  ->  ( k  =  X  ->  -.  k  e.  U ) )
2221necon2ad 2658 . . . . . . . . . 10  |-  ( ph  ->  ( k  e.  U  ->  k  =/=  X ) )
2322adantr 472 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  X )  ->  (
k  e.  U  -> 
k  =/=  X ) )
2423imp 436 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  k  =/=  X )
25 pssdifn0 3743 . . . . . . . 8  |-  ( ( k  C_  X  /\  k  =/=  X )  -> 
( X  \  k
)  =/=  (/) )
2617, 24, 25syl2anc 673 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  ( X  \  k )  =/=  (/) )
27 eqid 2471 . . . . . . . 8  |-  ( y  e.  X  |->  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )  =  ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
2827metdsreOLD 21963 . . . . . . 7  |-  ( ( D  e.  ( Met `  X )  /\  ( X  \  k )  C_  X  /\  ( X  \ 
k )  =/=  (/) )  -> 
( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
294, 5, 26, 28syl3anc 1292 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  (
y  e.  X  |->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
3027fmpt 6058 . . . . . 6  |-  ( A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  RR  <->  ( y  e.  X  |->  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
3129, 30sylibr 217 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR )
32 simplr 770 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  y  e.  X )
33 rsp 2773 . . . . 5  |-  ( A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  RR  ->  (
y  e.  X  ->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR ) )
3431, 32, 33sylc 61 . . . 4  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  RR )
352, 34fsumrecl 13877 . . 3  |-  ( (
ph  /\  y  e.  X )  ->  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR )
36 lebnum.u . . . . . . 7  |-  ( ph  ->  X  =  U. U
)
3736eleq2d 2534 . . . . . 6  |-  ( ph  ->  ( y  e.  X  <->  y  e.  U. U ) )
3837biimpa 492 . . . . 5  |-  ( (
ph  /\  y  e.  X )  ->  y  e.  U. U )
39 eluni2 4194 . . . . 5  |-  ( y  e.  U. U  <->  E. m  e.  U  y  e.  m )
4038, 39sylib 201 . . . 4  |-  ( (
ph  /\  y  e.  X )  ->  E. m  e.  U  y  e.  m )
41 0red 9662 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  e.  RR )
42 simplr 770 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  y  e.  X )
43 eqid 2471 . . . . . . . 8  |-  ( w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( w D z ) ) ,  RR* ,  `'  <  ) )  =  ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) )
4443metdsvalOLD 21957 . . . . . . 7  |-  ( y  e.  X  ->  (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  =  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )
4542, 44syl 17 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y )  =  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )
463ad2antrr 740 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  D  e.  ( Met `  X ) )
47 difssd 3550 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( X  \  m )  C_  X
)
486ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  U  C_  J
)
49 simprl 772 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  e.  U )
5048, 49sseldd 3419 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  e.  J )
51 elssuni 4219 . . . . . . . . . . 11  |-  ( m  e.  J  ->  m  C_ 
U. J )
5250, 51syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  C_  U. J
)
5346, 11, 143syl 18 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  X  =  U. J )
5452, 53sseqtr4d 3455 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  C_  X
)
55 eleq1 2537 . . . . . . . . . . . . . 14  |-  ( m  =  X  ->  (
m  e.  U  <->  X  e.  U ) )
5655notbid 301 . . . . . . . . . . . . 13  |-  ( m  =  X  ->  ( -.  m  e.  U  <->  -.  X  e.  U ) )
5718, 56syl5ibrcom 230 . . . . . . . . . . . 12  |-  ( ph  ->  ( m  =  X  ->  -.  m  e.  U ) )
5857necon2ad 2658 . . . . . . . . . . 11  |-  ( ph  ->  ( m  e.  U  ->  m  =/=  X ) )
5958ad2antrr 740 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( m  e.  U  ->  m  =/= 
X ) )
6049, 59mpd 15 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  m  =/=  X )
61 pssdifn0 3743 . . . . . . . . 9  |-  ( ( m  C_  X  /\  m  =/=  X )  -> 
( X  \  m
)  =/=  (/) )
6254, 60, 61syl2anc 673 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( X  \  m )  =/=  (/) )
6343metdsreOLD 21963 . . . . . . . 8  |-  ( ( D  e.  ( Met `  X )  /\  ( X  \  m )  C_  X  /\  ( X  \  m )  =/=  (/) )  -> 
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
6446, 47, 62, 63syl3anc 1292 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( w D z ) ) ,  RR* ,  `'  <  ) ) : X --> RR )
6564, 42ffvelrnd 6038 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y )  e.  RR )
6645, 65eqeltrrd 2550 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR )
6735adantr 472 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR )
6812ad2antrr 740 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  D  e.  ( *Met `  X
) )
6943metdsfOLD 21958 . . . . . . . . . . 11  |-  ( ( D  e.  ( *Met `  X )  /\  ( X  \  m )  C_  X
)  ->  ( w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( w D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
7068, 47, 69syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( w D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
7170, 42ffvelrnd 6038 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y )  e.  ( 0 [,] +oo ) )
72 elxrge0 11767 . . . . . . . . 9  |-  ( ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  e.  ( 0 [,] +oo )  <->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  e.  RR*  /\  0  <_  ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
) ) )
7371, 72sylib 201 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  e.  RR*  /\  0  <_  ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
) ) )
7473simprd 470 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  <_  ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
) )
75 elndif 3546 . . . . . . . . . 10  |-  ( y  e.  m  ->  -.  y  e.  ( X  \  m ) )
7675ad2antll 743 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  -.  y  e.  ( X  \  m
) )
7753difeq1d 3539 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( X  \  m )  =  ( U. J  \  m
) )
7813mopntop 21533 . . . . . . . . . . . . 13  |-  ( D  e.  ( *Met `  X )  ->  J  e.  Top )
7968, 78syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  J  e.  Top )
80 eqid 2471 . . . . . . . . . . . . 13  |-  U. J  =  U. J
8180opncld 20125 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  m  e.  J )  ->  ( U. J  \  m )  e.  (
Clsd `  J )
)
8279, 50, 81syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( U. J  \  m )  e.  ( Clsd `  J
) )
8377, 82eqeltrd 2549 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( X  \  m )  e.  (
Clsd `  J )
)
84 cldcls 20134 . . . . . . . . . 10  |-  ( ( X  \  m )  e.  ( Clsd `  J
)  ->  ( ( cls `  J ) `  ( X  \  m
) )  =  ( X  \  m ) )
8583, 84syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( ( cls `  J ) `  ( X  \  m
) )  =  ( X  \  m ) )
8676, 85neleqtrrd 2571 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  -.  y  e.  ( ( cls `  J
) `  ( X  \  m ) ) )
8743, 13metdseq0OLD 21964 . . . . . . . . . 10  |-  ( ( D  e.  ( *Met `  X )  /\  ( X  \  m )  C_  X  /\  y  e.  X
)  ->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  =  0  <->  y  e.  ( ( cls `  J
) `  ( X  \  m ) ) ) )
8868, 47, 42, 87syl3anc 1292 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  =  0  <->  y  e.  ( ( cls `  J
) `  ( X  \  m ) ) ) )
8988necon3abid 2679 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
)  =/=  0  <->  -.  y  e.  ( ( cls `  J ) `  ( X  \  m
) ) ) )
9086, 89mpbird 240 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  ( (
w  e.  X  |->  sup ( ran  ( z  e.  ( X  \  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y )  =/=  0 )
9165, 74, 90ne0gt0d 9789 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  <  ( ( w  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  m )  |->  ( w D z ) ) ,  RR* ,  `'  <  ) ) `  y
) )
9291, 45breqtrd 4420 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  <  sup ( ran  ( z  e.  ( X  \  m )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
931ad2antrr 740 . . . . . 6  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  U  e.  Fin )
9434adantlr 729 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  X )  /\  ( m  e.  U  /\  y  e.  m
) )  /\  k  e.  U )  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  RR )
9512ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  D  e.  ( *Met `  X ) )
9627metdsfOLD 21958 . . . . . . . . . . . 12  |-  ( ( D  e.  ( *Met `  X )  /\  ( X  \ 
k )  C_  X
)  ->  ( y  e.  X  |->  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
9795, 5, 96syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  (
y  e.  X  |->  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
9827fmpt 6058 . . . . . . . . . . 11  |-  ( A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] +oo )  <->  ( y  e.  X  |->  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) : X --> ( 0 [,] +oo ) )
9997, 98sylibr 217 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  ( 0 [,] +oo )
)
100 rsp 2773 . . . . . . . . . 10  |-  ( A. y  e.  X  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] +oo )  ->  ( y  e.  X  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] +oo ) ) )
10199, 32, 100sylc 61 . . . . . . . . 9  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  e.  ( 0 [,] +oo ) )
102 elxrge0 11767 . . . . . . . . 9  |-  ( sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  ( 0 [,] +oo )  <->  ( sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR*  /\  0  <_  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) ) )
103101, 102sylib 201 . . . . . . . 8  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  ( sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR*  /\  0  <_  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) ) )
104103simprd 470 . . . . . . 7  |-  ( ( ( ph  /\  y  e.  X )  /\  k  e.  U )  ->  0  <_  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
105104adantlr 729 . . . . . 6  |-  ( ( ( ( ph  /\  y  e.  X )  /\  ( m  e.  U  /\  y  e.  m
) )  /\  k  e.  U )  ->  0  <_  sup ( ran  (
z  e.  ( X 
\  k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
106 difeq2 3534 . . . . . . . . 9  |-  ( k  =  m  ->  ( X  \  k )  =  ( X  \  m
) )
107106mpteq1d 4477 . . . . . . . 8  |-  ( k  =  m  ->  (
z  e.  ( X 
\  k )  |->  ( y D z ) )  =  ( z  e.  ( X  \  m )  |->  ( y D z ) ) )
108107rneqd 5068 . . . . . . 7  |-  ( k  =  m  ->  ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) )  =  ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) )
109108supeq1d 7978 . . . . . 6  |-  ( k  =  m  ->  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  )  =  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )
11093, 94, 105, 109, 49fsumge1 13934 . . . . 5  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  sup ( ran  ( z  e.  ( X  \  m ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  <_  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )
11141, 66, 67, 92, 110ltletrd 9812 . . . 4  |-  ( ( ( ph  /\  y  e.  X )  /\  (
m  e.  U  /\  y  e.  m )
)  ->  0  <  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k
)  |->  ( y D z ) ) , 
RR* ,  `'  <  ) )
11240, 111rexlimddv 2875 . . 3  |-  ( (
ph  /\  y  e.  X )  ->  0  <  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
11335, 112elrpd 11361 . 2  |-  ( (
ph  /\  y  e.  X )  ->  sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  )  e.  RR+ )
114 lebnumlem1OLD.f . 2  |-  F  =  ( y  e.  X  |-> 
sum_ k  e.  U  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
115113, 114fmptd 6061 1  |-  ( ph  ->  F : X --> RR+ )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641   A.wral 2756   E.wrex 2757    \ cdif 3387    C_ wss 3390   (/)c0 3722   U.cuni 4190   class class class wbr 4395    |-> cmpt 4454   `'ccnv 4838   ran crn 4840   -->wf 5585   ` cfv 5589  (class class class)co 6308   Fincfn 7587   supcsup 7972   RRcr 9556   0cc0 9557   +oocpnf 9690   RR*cxr 9692    < clt 9693    <_ cle 9694   RR+crp 11325   [,]cicc 11663   sum_csu 13829   *Metcxmt 19032   Metcme 19033   MetOpencmopn 19037   Topctop 19994   Clsdccld 20108   clsccl 20110   Compccmp 20478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-oadd 7204  df-er 7381  df-ec 7383  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-n0 10894  df-z 10962  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-topgen 15420  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-top 19998  df-bases 19999  df-topon 20000  df-cld 20111  df-ntr 20112  df-cls 20113
This theorem is referenced by:  lebnumlem2OLD  22071  lebnumlem3OLD  22072
  Copyright terms: Public domain W3C validator