MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnumii Structured version   Visualization version   Unicode version

Theorem lebnumii 22075
Description: Specialize the Lebesgue number lemma lebnum 22073 to the unit interval. (Contributed by Mario Carneiro, 14-Feb-2015.)
Assertion
Ref Expression
lebnumii  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. n  e.  NN  A. k  e.  ( 1 ... n
) E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] ( k  /  n
) )  C_  u
)
Distinct variable group:    k, n, u, U

Proof of Theorem lebnumii
Dummy variables  r  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ii 21987 . . 3  |-  II  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
2 cnmet 21870 . . . . 5  |-  ( abs 
o.  -  )  e.  ( Met `  CC )
3 unitssre 11805 . . . . . 6  |-  ( 0 [,] 1 )  C_  RR
4 ax-resscn 9614 . . . . . 6  |-  RR  C_  CC
53, 4sstri 3427 . . . . 5  |-  ( 0 [,] 1 )  C_  CC
6 metres2 21456 . . . . 5  |-  ( ( ( abs  o.  -  )  e.  ( Met `  CC )  /\  (
0 [,] 1 ) 
C_  CC )  -> 
( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )  e.  ( Met `  (
0 [,] 1 ) ) )
72, 5, 6mp2an 686 . . . 4  |-  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  e.  ( Met `  ( 0 [,] 1 ) )
87a1i 11 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  e.  ( Met `  ( 0 [,] 1 ) ) )
9 iicmp 21996 . . . 4  |-  II  e.  Comp
109a1i 11 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  II  e.  Comp )
11 simpl 464 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  U  C_  II )
12 simpr 468 . . 3  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( 0 [,] 1 )  = 
U. U )
131, 8, 10, 11, 12lebnum 22073 . 2  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. r  e.  RR+  A. x  e.  ( 0 [,] 1
) E. u  e.  U  ( x (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u )
14 rpreccl 11349 . . . . . . . 8  |-  ( r  e.  RR+  ->  ( 1  /  r )  e.  RR+ )
1514adantl 473 . . . . . . 7  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR+ )
1615rpred 11364 . . . . . 6  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( 1  /  r )  e.  RR )
1715rpge0d 11368 . . . . . 6  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  0  <_  ( 1  /  r ) )
18 flge0nn0 12087 . . . . . 6  |-  ( ( ( 1  /  r
)  e.  RR  /\  0  <_  ( 1  / 
r ) )  -> 
( |_ `  (
1  /  r ) )  e.  NN0 )
1916, 17, 18syl2anc 673 . . . . 5  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( |_ `  ( 1  /  r
) )  e.  NN0 )
20 nn0p1nn 10933 . . . . 5  |-  ( ( |_ `  ( 1  /  r ) )  e.  NN0  ->  ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  NN )
2119, 20syl 17 . . . 4  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( ( |_ `  ( 1  / 
r ) )  +  1 )  e.  NN )
22 elfznn 11854 . . . . . . . . . . . 12  |-  ( k  e.  ( 1 ... ( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  k  e.  NN )
2322adantl 473 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  NN )
2423nnrpd 11362 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  RR+ )
2521adantr 472 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  NN )
2625nnrpd 11362 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  RR+ )
2724, 26rpdivcld 11381 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR+ )
2827rpred 11364 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR )
2927rpge0d 11368 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )
30 elfzle2 11829 . . . . . . . . . . 11  |-  ( k  e.  ( 1 ... ( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  k  <_  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
3130adantl 473 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  <_  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
3225nnred 10646 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  RR )
3332recnd 9687 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  e.  CC )
3433mulid1d 9678 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 )  =  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
3531, 34breqtrrd 4422 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  <_  ( ( ( |_
`  ( 1  / 
r ) )  +  1 )  x.  1 ) )
3623nnred 10646 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  RR )
37 1re 9660 . . . . . . . . . . 11  |-  1  e.  RR
3837a1i 11 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  1  e.  RR )
3925nngt0d 10675 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <  ( ( |_ `  ( 1  /  r
) )  +  1 ) )
40 ledivmul 10503 . . . . . . . . . 10  |-  ( ( k  e.  RR  /\  1  e.  RR  /\  (
( ( |_ `  ( 1  /  r
) )  +  1 )  e.  RR  /\  0  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  ->  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1  <->  k  <_  (
( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 ) ) )
4136, 38, 32, 39, 40syl112anc 1296 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  <_  1  <->  k  <_  ( ( ( |_ `  ( 1  /  r
) )  +  1 )  x.  1 ) ) )
4235, 41mpbird 240 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <_  1 )
43 0re 9661 . . . . . . . . 9  |-  0  e.  RR
4443, 37elicc2i 11725 . . . . . . . 8  |-  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 )  <->  ( (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR  /\  0  <_  ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  /\  ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1 ) )
4528, 29, 42, 44syl3anbrc 1214 . . . . . . 7  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 ) )
46 oveq1 6315 . . . . . . . . . 10  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  (
x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r ) )
4746sseq1d 3445 . . . . . . . . 9  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  (
( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u 
<->  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
4847rexbidv 2892 . . . . . . . 8  |-  ( x  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  ->  ( E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u 
<->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
4948rspcv 3132 . . . . . . 7  |-  ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( 0 [,] 1 )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
5045, 49syl 17 . . . . . 6  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u ) )
51 simplr 770 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR+ )
5251rpred 11364 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR )
5328, 52resubcld 10068 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  e.  RR )
5453rexrd 9708 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  e.  RR* )
5528, 52readdcld 9688 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r )  e.  RR )
5655rexrd 9708 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r )  e.  RR* )
57 nnm1nn0 10935 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN  ->  (
k  -  1 )  e.  NN0 )
5823, 57syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  NN0 )
5958nn0red 10950 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  RR )
6059, 25nndivred 10680 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  RR )
6136recnd 9687 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  k  e.  CC )
6259recnd 9687 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  1 )  e.  CC )
6325nnne0d 10676 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( |_ `  (
1  /  r ) )  +  1 )  =/=  0 )
6461, 62, 33, 63divsubdird 10444 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  (
k  -  1 ) )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  =  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ) )
65 ax-1cn 9615 . . . . . . . . . . . . . . . 16  |-  1  e.  CC
66 nncan 9923 . . . . . . . . . . . . . . . 16  |-  ( ( k  e.  CC  /\  1  e.  CC )  ->  ( k  -  (
k  -  1 ) )  =  1 )
6761, 65, 66sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  -  ( k  -  1 ) )  =  1 )
6867oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  -  (
k  -  1 ) )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  =  ( 1  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
6964, 68eqtr3d 2507 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  =  ( 1  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
7051rprecred 11375 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  r )  e.  RR )
71 flltp1 12069 . . . . . . . . . . . . . . 15  |-  ( ( 1  /  r )  e.  RR  ->  (
1  /  r )  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
7270, 71syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  r )  <  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )
73 rpgt0 11336 . . . . . . . . . . . . . . . 16  |-  ( r  e.  RR+  ->  0  < 
r )
7473ad2antlr 741 . . . . . . . . . . . . . . 15  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <  r )
75 ltdiv23 10519 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  ( r  e.  RR  /\  0  <  r )  /\  ( ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  -> 
( ( 1  / 
r )  <  (
( |_ `  (
1  /  r ) )  +  1 )  <-> 
( 1  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  <  r ) )
7638, 52, 74, 32, 39, 75syl122anc 1301 . . . . . . . . . . . . . 14  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( 1  /  r
)  <  ( ( |_ `  ( 1  / 
r ) )  +  1 )  <->  ( 1  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  < 
r ) )
7772, 76mpbid 215 . . . . . . . . . . . . 13  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
1  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <  r )
7869, 77eqbrtrd 4416 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )  <  r )
7928, 60, 52, 78ltsub23d 10239 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r )  <  ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
8028, 51ltaddrpd 11394 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  <  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) )
81 iccssioo 11728 . . . . . . . . . . 11  |-  ( ( ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r )  e.  RR*  /\  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r )  e.  RR* )  /\  ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r )  <  (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  /\  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  <  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r ) ) )
8254, 56, 79, 80, 81syl22anc 1293 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  +  r ) ) )
83 0red 9662 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  e.  RR )
8458nn0ge0d 10952 . . . . . . . . . . . 12  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( k  -  1 ) )
85 divge0 10496 . . . . . . . . . . . 12  |-  ( ( ( ( k  - 
1 )  e.  RR  /\  0  <_  ( k  -  1 ) )  /\  ( ( ( |_ `  ( 1  /  r ) )  +  1 )  e.  RR  /\  0  < 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  -> 
0  <_  ( (
k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) )
8659, 84, 32, 39, 85syl22anc 1293 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  0  <_  ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )
87 iccss 11727 . . . . . . . . . . 11  |-  ( ( ( 0  e.  RR  /\  1  e.  RR )  /\  ( 0  <_ 
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  /\  ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  <_ 
1 ) )  -> 
( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  ( 0 [,] 1 ) )
8883, 38, 86, 42, 87syl22anc 1293 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( 0 [,] 1 ) )
8982, 88ssind 3647 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1
) ) )
90 eqid 2471 . . . . . . . . . . . . 13  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  =  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )
9190rexmet 21887 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR )
9291a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( abs  o.  -  )  |`  ( RR  X.  RR ) )  e.  ( *Met `  RR ) )
93 dfss1 3628 . . . . . . . . . . . . 13  |-  ( ( 0 [,] 1 ) 
C_  RR  <->  ( RR  i^i  ( 0 [,] 1
) )  =  ( 0 [,] 1 ) )
943, 93mpbi 213 . . . . . . . . . . . 12  |-  ( RR 
i^i  ( 0 [,] 1 ) )  =  ( 0 [,] 1
)
9545, 94syl6eleqr 2560 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( RR  i^i  ( 0 [,] 1
) ) )
96 rpxr 11332 . . . . . . . . . . . 12  |-  ( r  e.  RR+  ->  r  e. 
RR* )
9796ad2antlr 741 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  r  e.  RR* )
98 xpss12 4945 . . . . . . . . . . . . . . 15  |-  ( ( ( 0 [,] 1
)  C_  RR  /\  (
0 [,] 1 ) 
C_  RR )  -> 
( ( 0 [,] 1 )  X.  (
0 [,] 1 ) )  C_  ( RR  X.  RR ) )
993, 3, 98mp2an 686 . . . . . . . . . . . . . 14  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  C_  ( RR  X.  RR )
100 resabs1 5139 . . . . . . . . . . . . . 14  |-  ( ( ( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) 
C_  ( RR  X.  RR )  ->  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  =  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) )
10199, 100ax-mp 5 . . . . . . . . . . . . 13  |-  ( ( ( abs  o.  -  )  |`  ( RR  X.  RR ) )  |`  (
( 0 [,] 1
)  X.  ( 0 [,] 1 ) ) )  =  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
102101eqcomi 2480 . . . . . . . . . . . 12  |-  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )  =  ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) )
103102blres 21524 . . . . . . . . . . 11  |-  ( ( ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )  e.  ( *Met `  RR )  /\  (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  e.  ( RR  i^i  ( 0 [,] 1
) )  /\  r  e.  RR* )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  i^i  ( 0 [,] 1 ) ) )
10492, 95, 97, 103syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  i^i  ( 0 [,] 1 ) ) )
10590bl2ioo 21888 . . . . . . . . . . . 12  |-  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  e.  RR  /\  r  e.  RR )  ->  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  =  ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r ) (,) (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) ) )
10628, 52, 105syl2anc 673 . . . . . . . . . . 11  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( RR  X.  RR ) ) ) r )  =  ( ( ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  -  r ) (,) ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  +  r ) ) )
107106ineq1d 3624 . . . . . . . . . 10  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) ) ) r )  i^i  ( 0 [,] 1
) )  =  ( ( ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) )  -  r ) (,) (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1 ) ) )
108104, 107eqtrd 2505 . . . . . . . . 9  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  =  ( ( ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) )  -  r
) (,) ( ( k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) )  +  r ) )  i^i  ( 0 [,] 1 ) ) )
10989, 108sseqtr4d 3455 . . . . . . . 8  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r ) )
110 sstr2 3425 . . . . . . . 8  |-  ( ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  ( ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  ->  ( (
( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u ) )
111109, 110syl 17 . . . . . . 7  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  (
( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )  C_  u
) )
112111reximdv 2857 . . . . . 6  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( E. u  e.  U  ( ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  u )
)
11350, 112syld 44 . . . . 5  |-  ( ( ( ( U  C_  II  /\  ( 0 [,] 1 )  =  U. U )  /\  r  e.  RR+ )  /\  k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )  ->  ( A. x  e.  (
0 [,] 1 ) E. u  e.  U  ( x ( ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) ) ) r )  C_  u  ->  E. u  e.  U  ( ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) [,] (
k  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) )  C_  u )
)
114113ralrimdva 2812 . . . 4  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( A. x  e.  ( 0 [,] 1 ) E. u  e.  U  ( x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  A. k  e.  ( 1 ... ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u ) )
115 oveq2 6316 . . . . . 6  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
1 ... n )  =  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) )
116 oveq2 6316 . . . . . . . . 9  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( k  -  1 )  /  n )  =  ( ( k  -  1 )  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
117 oveq2 6316 . . . . . . . . 9  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
k  /  n )  =  ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )
118116, 117oveq12d 6326 . . . . . . . 8  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( ( k  - 
1 )  /  n
) [,] ( k  /  n ) )  =  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) ) )
119118sseq1d 3445 . . . . . . 7  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  (
( ( ( k  -  1 )  /  n ) [,] (
k  /  n ) )  C_  u  <->  ( (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) [,] ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  C_  u ) )
120119rexbidv 2892 . . . . . 6  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  ( E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] (
k  /  n ) )  C_  u  <->  E. u  e.  U  ( (
( k  -  1 )  /  ( ( |_ `  ( 1  /  r ) )  +  1 ) ) [,] ( k  / 
( ( |_ `  ( 1  /  r
) )  +  1 ) ) )  C_  u ) )
121115, 120raleqbidv 2987 . . . . 5  |-  ( n  =  ( ( |_
`  ( 1  / 
r ) )  +  1 )  ->  ( A. k  e.  (
1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u  <->  A. k  e.  ( 1 ... (
( |_ `  (
1  /  r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  -  1 )  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) [,] ( k  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) )  C_  u
) )
122121rspcev 3136 . . . 4  |-  ( ( ( ( |_ `  ( 1  /  r
) )  +  1 )  e.  NN  /\  A. k  e.  ( 1 ... ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) E. u  e.  U  ( ( ( k  - 
1 )  /  (
( |_ `  (
1  /  r ) )  +  1 ) ) [,] ( k  /  ( ( |_
`  ( 1  / 
r ) )  +  1 ) ) ) 
C_  u )  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u )
12321, 114, 122syl6an 554 . . 3  |-  ( ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  /\  r  e.  RR+ )  ->  ( A. x  e.  ( 0 [,] 1 ) E. u  e.  U  ( x ( ball `  (
( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u ) )
124123rexlimdva 2871 . 2  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  ( E. r  e.  RR+  A. x  e.  ( 0 [,] 1
) E. u  e.  U  ( x (
ball `  ( ( abs  o.  -  )  |`  ( ( 0 [,] 1 )  X.  (
0 [,] 1 ) ) ) ) r )  C_  u  ->  E. n  e.  NN  A. k  e.  ( 1 ... n ) E. u  e.  U  ( ( ( k  - 
1 )  /  n
) [,] ( k  /  n ) ) 
C_  u ) )
12513, 124mpd 15 1  |-  ( ( U  C_  II  /\  ( 0 [,] 1
)  =  U. U
)  ->  E. n  e.  NN  A. k  e.  ( 1 ... n
) E. u  e.  U  ( ( ( k  -  1 )  /  n ) [,] ( k  /  n
) )  C_  u
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757    i^i cin 3389    C_ wss 3390   U.cuni 4190   class class class wbr 4395    X. cxp 4837    |` cres 4841    o. ccom 4843   ` cfv 5589  (class class class)co 6308   CCcc 9555   RRcr 9556   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562   RR*cxr 9692    < clt 9693    <_ cle 9694    - cmin 9880    / cdiv 10291   NNcn 10631   NN0cn0 10893   RR+crp 11325   (,)cioo 11660   [,]cicc 11663   ...cfz 11810   |_cfl 12059   abscabs 13374   *Metcxmt 19032   Metcme 19033   ballcbl 19034   Compccmp 20478   IIcii 21985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634  ax-pre-sup 9635  ax-addf 9636  ax-mulf 9637
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-iin 4272  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-of 6550  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-1o 7200  df-2o 7201  df-oadd 7204  df-er 7381  df-ec 7383  df-map 7492  df-ixp 7541  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-fi 7943  df-sup 7974  df-inf 7975  df-oi 8043  df-card 8391  df-cda 8616  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-q 11288  df-rp 11326  df-xneg 11432  df-xadd 11433  df-xmul 11434  df-ioo 11664  df-ico 11666  df-icc 11667  df-fz 11811  df-fzo 11943  df-fl 12061  df-seq 12252  df-exp 12311  df-hash 12554  df-cj 13239  df-re 13240  df-im 13241  df-sqrt 13375  df-abs 13376  df-clim 13629  df-sum 13830  df-struct 15201  df-ndx 15202  df-slot 15203  df-base 15204  df-sets 15205  df-ress 15206  df-plusg 15281  df-mulr 15282  df-starv 15283  df-sca 15284  df-vsca 15285  df-ip 15286  df-tset 15287  df-ple 15288  df-ds 15290  df-unif 15291  df-hom 15292  df-cco 15293  df-rest 15399  df-topn 15400  df-0g 15418  df-gsum 15419  df-topgen 15420  df-pt 15421  df-prds 15424  df-xrs 15478  df-qtop 15484  df-imas 15485  df-xps 15488  df-mre 15570  df-mrc 15571  df-acs 15573  df-mgm 16566  df-sgrp 16605  df-mnd 16615  df-submnd 16661  df-mulg 16754  df-cntz 17049  df-cmn 17510  df-psmet 19039  df-xmet 19040  df-met 19041  df-bl 19042  df-mopn 19043  df-cnfld 19048  df-top 19998  df-bases 19999  df-topon 20000  df-topsp 20001  df-cld 20111  df-ntr 20112  df-cls 20113  df-cn 20320  df-cnp 20321  df-cmp 20479  df-tx 20654  df-hmeo 20847  df-xms 21413  df-ms 21414  df-tms 21415  df-ii 21987
This theorem is referenced by:  cvmliftlem15  30093
  Copyright terms: Public domain W3C validator