MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lebnum Structured version   Unicode version

Theorem lebnum 20558
Description: The Lebesgue number lemma, or Lebesgue covering lemma. If  X is a compact metric space and  U is an open cover of  X, then there exists a positive real number 
d such that every ball of size  d (and every subset of a ball of size  d, including every subset of diameter less than  d) is a subset of some member of the cover. (Contributed by Mario Carneiro, 14-Feb-2015.) (Proof shortened by Mario Carneiro, 5-Sep-2015.)
Hypotheses
Ref Expression
lebnum.j  |-  J  =  ( MetOpen `  D )
lebnum.d  |-  ( ph  ->  D  e.  ( Met `  X ) )
lebnum.c  |-  ( ph  ->  J  e.  Comp )
lebnum.s  |-  ( ph  ->  U  C_  J )
lebnum.u  |-  ( ph  ->  X  =  U. U
)
Assertion
Ref Expression
lebnum  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Distinct variable groups:    u, d, x, D    J, d, x    U, d, u, x    ph, d, x    X, d, u, x
Allowed substitution hints:    ph( u)    J( u)

Proof of Theorem lebnum
Dummy variables  k  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lebnum.c . . 3  |-  ( ph  ->  J  e.  Comp )
2 lebnum.s . . 3  |-  ( ph  ->  U  C_  J )
3 lebnum.d . . . . . 6  |-  ( ph  ->  D  e.  ( Met `  X ) )
4 metxmet 19931 . . . . . 6  |-  ( D  e.  ( Met `  X
)  ->  D  e.  ( *Met `  X
) )
53, 4syl 16 . . . . 5  |-  ( ph  ->  D  e.  ( *Met `  X ) )
6 lebnum.j . . . . . 6  |-  J  =  ( MetOpen `  D )
76mopnuni 20038 . . . . 5  |-  ( D  e.  ( *Met `  X )  ->  X  =  U. J )
85, 7syl 16 . . . 4  |-  ( ph  ->  X  =  U. J
)
9 lebnum.u . . . 4  |-  ( ph  ->  X  =  U. U
)
108, 9eqtr3d 2477 . . 3  |-  ( ph  ->  U. J  =  U. U )
11 eqid 2443 . . . 4  |-  U. J  =  U. J
1211cmpcov 19014 . . 3  |-  ( ( J  e.  Comp  /\  U  C_  J  /\  U. J  =  U. U )  ->  E. w  e.  ( ~P U  i^i  Fin ) U. J  =  U. w )
131, 2, 10, 12syl3anc 1218 . 2  |-  ( ph  ->  E. w  e.  ( ~P U  i^i  Fin ) U. J  =  U. w )
14 1rp 11016 . . . 4  |-  1  e.  RR+
15 inss1 3591 . . . . . . . . . 10  |-  ( ~P U  i^i  Fin )  C_ 
~P U
16 simprl 755 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  w  e.  ( ~P U  i^i  Fin ) )
1715, 16sseldi 3375 . . . . . . . . 9  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  w  e.  ~P U )
1817elpwid 3891 . . . . . . . 8  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  w  C_  U
)
1918ad2antrr 725 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  w  C_  U
)
20 simplr 754 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  X  e.  w )
2119, 20sseldd 3378 . . . . . 6  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  X  e.  U )
225ad3antrrr 729 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  D  e.  ( *Met `  X
) )
23 simpr 461 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  x  e.  X )
24 rpxr 11019 . . . . . . . 8  |-  ( 1  e.  RR+  ->  1  e. 
RR* )
2514, 24mp1i 12 . . . . . . 7  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  1  e.  RR* )
26 blssm 20015 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  X  /\  1  e.  RR* )  ->  ( x ( ball `  D ) 1 ) 
C_  X )
2722, 23, 25, 26syl3anc 1218 . . . . . 6  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  ( x
( ball `  D )
1 )  C_  X
)
28 sseq2 3399 . . . . . . 7  |-  ( u  =  X  ->  (
( x ( ball `  D ) 1 ) 
C_  u  <->  ( x
( ball `  D )
1 )  C_  X
) )
2928rspcev 3094 . . . . . 6  |-  ( ( X  e.  U  /\  ( x ( ball `  D ) 1 ) 
C_  X )  ->  E. u  e.  U  ( x ( ball `  D ) 1 ) 
C_  u )
3021, 27, 29syl2anc 661 . . . . 5  |-  ( ( ( ( ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  /\  x  e.  X
)  ->  E. u  e.  U  ( x
( ball `  D )
1 )  C_  u
)
3130ralrimiva 2820 . . . 4  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  ->  A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) 1 ) 
C_  u )
32 oveq2 6120 . . . . . . . 8  |-  ( d  =  1  ->  (
x ( ball `  D
) d )  =  ( x ( ball `  D ) 1 ) )
3332sseq1d 3404 . . . . . . 7  |-  ( d  =  1  ->  (
( x ( ball `  D ) d ) 
C_  u  <->  ( x
( ball `  D )
1 )  C_  u
) )
3433rexbidv 2757 . . . . . 6  |-  ( d  =  1  ->  ( E. u  e.  U  ( x ( ball `  D ) d ) 
C_  u  <->  E. u  e.  U  ( x
( ball `  D )
1 )  C_  u
) )
3534ralbidv 2756 . . . . 5  |-  ( d  =  1  ->  ( A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) d ) 
C_  u  <->  A. x  e.  X  E. u  e.  U  ( x
( ball `  D )
1 )  C_  u
) )
3635rspcev 3094 . . . 4  |-  ( ( 1  e.  RR+  /\  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) 1 )  C_  u )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
3714, 31, 36sylancr 663 . . 3  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  X  e.  w )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
383ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  D  e.  ( Met `  X ) )
391ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  J  e.  Comp )
4018adantr 465 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  w  C_  U
)
412ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  U  C_  J
)
4240, 41sstrd 3387 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  w  C_  J
)
438ad2antrr 725 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  X  =  U. J )
44 simplrr 760 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  U. J  = 
U. w )
4543, 44eqtrd 2475 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  X  =  U. w )
46 inss2 3592 . . . . . . 7  |-  ( ~P U  i^i  Fin )  C_ 
Fin
4746, 16sseldi 3375 . . . . . 6  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  w  e.  Fin )
4847adantr 465 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  w  e.  Fin )
49 simpr 461 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  -.  X  e.  w )
50 eqid 2443 . . . . 5  |-  ( y  e.  X  |->  sum_ k  e.  w  sup ( ran  ( z  e.  ( X  \  k ) 
|->  ( y D z ) ) ,  RR* ,  `'  <  ) )  =  ( y  e.  X  |-> 
sum_ k  e.  w  sup ( ran  ( z  e.  ( X  \ 
k )  |->  ( y D z ) ) ,  RR* ,  `'  <  ) )
51 eqid 2443 . . . . 5  |-  ( topGen ` 
ran  (,) )  =  (
topGen `  ran  (,) )
526, 38, 39, 42, 45, 48, 49, 50, 51lebnumlem3 20557 . . . 4  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  w  ( x (
ball `  D )
d )  C_  u
)
53 ssrexv 3438 . . . . . . 7  |-  ( w 
C_  U  ->  ( E. u  e.  w  ( x ( ball `  D ) d ) 
C_  u  ->  E. u  e.  U  ( x
( ball `  D )
d )  C_  u
) )
5440, 53syl 16 . . . . . 6  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  ( E. u  e.  w  (
x ( ball `  D
) d )  C_  u  ->  E. u  e.  U  ( x ( ball `  D ) d ) 
C_  u ) )
5554ralimdv 2816 . . . . 5  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  ( A. x  e.  X  E. u  e.  w  (
x ( ball `  D
) d )  C_  u  ->  A. x  e.  X  E. u  e.  U  ( x ( ball `  D ) d ) 
C_  u ) )
5655reximdv 2848 . . . 4  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  ( E. d  e.  RR+  A. x  e.  X  E. u  e.  w  ( x
( ball `  D )
d )  C_  u  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u ) )
5752, 56mpd 15 . . 3  |-  ( ( ( ph  /\  (
w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  /\  -.  X  e.  w
)  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  ( x (
ball `  D )
d )  C_  u
)
5837, 57pm2.61dan 789 . 2  |-  ( (
ph  /\  ( w  e.  ( ~P U  i^i  Fin )  /\  U. J  =  U. w ) )  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
5913, 58rexlimddv 2866 1  |-  ( ph  ->  E. d  e.  RR+  A. x  e.  X  E. u  e.  U  (
x ( ball `  D
) d )  C_  u )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2736   E.wrex 2737    \ cdif 3346    i^i cin 3348    C_ wss 3349   ~Pcpw 3881   U.cuni 4112    e. cmpt 4371   `'ccnv 4860   ran crn 4862   ` cfv 5439  (class class class)co 6112   Fincfn 7331   supcsup 7711   1c1 9304   RR*cxr 9438    < clt 9439   RR+crp 11012   (,)cioo 11321   sum_csu 13184   topGenctg 14397   *Metcxmt 17823   Metcme 17824   ballcbl 17825   MetOpencmopn 17828   Compccmp 19011
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393  ax-inf2 7868  ax-cnex 9359  ax-resscn 9360  ax-1cn 9361  ax-icn 9362  ax-addcl 9363  ax-addrcl 9364  ax-mulcl 9365  ax-mulrcl 9366  ax-mulcom 9367  ax-addass 9368  ax-mulass 9369  ax-distr 9370  ax-i2m1 9371  ax-1ne0 9372  ax-1rid 9373  ax-rnegex 9374  ax-rrecex 9375  ax-cnre 9376  ax-pre-lttri 9377  ax-pre-lttrn 9378  ax-pre-ltadd 9379  ax-pre-mulgt0 9380  ax-pre-sup 9381  ax-addf 9382  ax-mulf 9383
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-fal 1375  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-nel 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rmo 2744  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-pss 3365  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-tp 3903  df-op 3905  df-uni 4113  df-int 4150  df-iun 4194  df-iin 4195  df-br 4314  df-opab 4372  df-mpt 4373  df-tr 4407  df-eprel 4653  df-id 4657  df-po 4662  df-so 4663  df-fr 4700  df-se 4701  df-we 4702  df-ord 4743  df-on 4744  df-lim 4745  df-suc 4746  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-isom 5448  df-riota 6073  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-of 6341  df-om 6498  df-1st 6598  df-2nd 6599  df-supp 6712  df-recs 6853  df-rdg 6887  df-1o 6941  df-2o 6942  df-oadd 6945  df-er 7122  df-ec 7124  df-map 7237  df-ixp 7285  df-en 7332  df-dom 7333  df-sdom 7334  df-fin 7335  df-fsupp 7642  df-fi 7682  df-sup 7712  df-oi 7745  df-card 8130  df-cda 8358  df-pnf 9441  df-mnf 9442  df-xr 9443  df-ltxr 9444  df-le 9445  df-sub 9618  df-neg 9619  df-div 10015  df-nn 10344  df-2 10401  df-3 10402  df-4 10403  df-5 10404  df-6 10405  df-7 10406  df-8 10407  df-9 10408  df-10 10409  df-n0 10601  df-z 10668  df-dec 10777  df-uz 10883  df-q 10975  df-rp 11013  df-xneg 11110  df-xadd 11111  df-xmul 11112  df-ioo 11325  df-ico 11327  df-icc 11328  df-fz 11459  df-fzo 11570  df-seq 11828  df-exp 11887  df-hash 12125  df-cj 12609  df-re 12610  df-im 12611  df-sqr 12745  df-abs 12746  df-clim 12987  df-sum 13185  df-struct 14197  df-ndx 14198  df-slot 14199  df-base 14200  df-sets 14201  df-ress 14202  df-plusg 14272  df-mulr 14273  df-starv 14274  df-sca 14275  df-vsca 14276  df-ip 14277  df-tset 14278  df-ple 14279  df-ds 14281  df-unif 14282  df-hom 14283  df-cco 14284  df-rest 14382  df-topn 14383  df-0g 14401  df-gsum 14402  df-topgen 14403  df-pt 14404  df-prds 14407  df-xrs 14461  df-qtop 14466  df-imas 14467  df-xps 14469  df-mre 14545  df-mrc 14546  df-acs 14548  df-mnd 15436  df-submnd 15486  df-mulg 15569  df-cntz 15856  df-cmn 16300  df-psmet 17831  df-xmet 17832  df-met 17833  df-bl 17834  df-mopn 17835  df-cnfld 17841  df-top 18525  df-bases 18527  df-topon 18528  df-topsp 18529  df-cld 18645  df-ntr 18646  df-cls 18647  df-cn 18853  df-cnp 18854  df-cmp 19012  df-tx 19157  df-hmeo 19350  df-xms 19917  df-ms 19918  df-tms 19919
This theorem is referenced by:  xlebnum  20559  lebnumii  20560
  Copyright terms: Public domain W3C validator