MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leadd2dd Structured version   Unicode version

Theorem leadd2dd 10207
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
leadd1dd.4  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
leadd2dd  |-  ( ph  ->  ( C  +  A
)  <_  ( C  +  B ) )

Proof of Theorem leadd2dd
StepHypRef Expression
1 leadd1dd.4 . 2  |-  ( ph  ->  A  <_  B )
2 leidd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltnegd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 ltadd1d.3 . . 3  |-  ( ph  ->  C  e.  RR )
52, 3, 4leadd2d 10187 . 2  |-  ( ph  ->  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B ) ) )
61, 5mpbid 210 1  |-  ( ph  ->  ( C  +  A
)  <_  ( C  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1842   class class class wbr 4395  (class class class)co 6278   RRcr 9521    + caddc 9525    <_ cle 9659
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-op 3979  df-uni 4192  df-br 4396  df-opab 4454  df-mpt 4455  df-id 4738  df-po 4744  df-so 4745  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-ov 6281  df-er 7348  df-en 7555  df-dom 7556  df-sdom 7557  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664
This theorem is referenced by:  expmulnbnd  12342  discr1  12346  hashun2  12499  abstri  13312  iseraltlem2  13654  prmreclem4  14646  tchcphlem1  21970  trirn  22119  nulmbl2  22239  voliunlem1  22252  uniioombllem4  22287  itg2split  22448  ulmcn  23086  abslogle  23297  emcllem2  23652  lgambdd  23692  chtublem  23867  chtub  23868  logfaclbnd  23878  bcmax  23934  chebbnd1lem2  24036  rplogsumlem1  24050  selberglem2  24112  selbergb  24115  chpdifbndlem1  24119  pntpbnd1a  24151  pntpbnd2  24153  pntibndlem2  24157  pntibndlem3  24158  pntlemg  24164  pntlemr  24168  pntlemk  24172  pntlemo  24173  ostth2lem3  24201  smcnlem  26021  minvecolem3  26206  staddi  27578  stadd3i  27580  nexple  28457  rescon  29543  itg2addnc  31442  ftc1anclem8  31470  pell1qrgaplem  35170  leadd12dd  36890  ioodvbdlimc1lem2  37097  stoweidlem11  37161  stoweidlem26  37176  stirlinglem8  37231  stirlinglem12  37235  fourierdlem4  37261  fourierdlem10  37267  fourierdlem42  37299  fourierdlem47  37304  fourierdlem72  37329  fourierdlem79  37336  fourierdlem93  37350  fourierdlem101  37358  fourierdlem103  37360  fourierdlem104  37361  fourierdlem111  37368  p1lep2  37954
  Copyright terms: Public domain W3C validator