MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leadd2dd Structured version   Unicode version

Theorem leadd2dd 9946
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
leadd1dd.4  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
leadd2dd  |-  ( ph  ->  ( C  +  A
)  <_  ( C  +  B ) )

Proof of Theorem leadd2dd
StepHypRef Expression
1 leadd1dd.4 . 2  |-  ( ph  ->  A  <_  B )
2 leidd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltnegd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 ltadd1d.3 . . 3  |-  ( ph  ->  C  e.  RR )
52, 3, 4leadd2d 9926 . 2  |-  ( ph  ->  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B ) ) )
61, 5mpbid 210 1  |-  ( ph  ->  ( C  +  A
)  <_  ( C  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1756   class class class wbr 4287  (class class class)co 6086   RRcr 9273    + caddc 9277    <_ cle 9411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2419  ax-sep 4408  ax-nul 4416  ax-pow 4465  ax-pr 4526  ax-un 6367  ax-resscn 9331  ax-1cn 9332  ax-icn 9333  ax-addcl 9334  ax-addrcl 9335  ax-mulcl 9336  ax-mulrcl 9337  ax-mulcom 9338  ax-addass 9339  ax-mulass 9340  ax-distr 9341  ax-i2m1 9342  ax-1ne0 9343  ax-1rid 9344  ax-rnegex 9345  ax-rrecex 9346  ax-cnre 9347  ax-pre-lttri 9348  ax-pre-lttrn 9349  ax-pre-ltadd 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2256  df-mo 2257  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2715  df-rex 2716  df-rab 2719  df-v 2969  df-sbc 3182  df-csb 3284  df-dif 3326  df-un 3328  df-in 3330  df-ss 3337  df-nul 3633  df-if 3787  df-pw 3857  df-sn 3873  df-pr 3875  df-op 3879  df-uni 4087  df-br 4288  df-opab 4346  df-mpt 4347  df-id 4631  df-po 4636  df-so 4637  df-xp 4841  df-rel 4842  df-cnv 4843  df-co 4844  df-dm 4845  df-rn 4846  df-res 4847  df-ima 4848  df-iota 5376  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6089  df-er 7093  df-en 7303  df-dom 7304  df-sdom 7305  df-pnf 9412  df-mnf 9413  df-xr 9414  df-ltxr 9415  df-le 9416
This theorem is referenced by:  expmulnbnd  11988  discr1  11992  hashun2  12138  abstri  12810  iseraltlem2  13152  prmreclem4  13972  tchcphlem1  20730  trirn  20879  nulmbl2  20998  voliunlem1  21011  uniioombllem4  21046  itg2split  21207  ulmcn  21844  abslogle  22047  emcllem2  22370  chtublem  22530  chtub  22531  logfaclbnd  22541  bcmax  22597  chebbnd1lem2  22699  rplogsumlem1  22713  selberglem2  22775  selbergb  22778  chpdifbndlem1  22782  pntpbnd1a  22814  pntpbnd2  22816  pntibndlem2  22820  pntibndlem3  22821  pntlemg  22827  pntlemr  22831  pntlemk  22835  pntlemo  22836  ostth2lem3  22864  smcnlem  24060  minvecolem3  24245  staddi  25618  stadd3i  25620  nexple  26417  lgambdd  26992  rescon  27104  itg2addnc  28417  ftc1anclem8  28445  pell1qrgaplem  29185  stoweidlem11  29777  stoweidlem26  29792  stirlinglem8  29847  stirlinglem12  29851  p1lep2  30148
  Copyright terms: Public domain W3C validator