MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  leadd2dd Structured version   Unicode version

Theorem leadd2dd 10055
Description: Addition to both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 30-May-2016.)
Hypotheses
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
ltnegd.2  |-  ( ph  ->  B  e.  RR )
ltadd1d.3  |-  ( ph  ->  C  e.  RR )
leadd1dd.4  |-  ( ph  ->  A  <_  B )
Assertion
Ref Expression
leadd2dd  |-  ( ph  ->  ( C  +  A
)  <_  ( C  +  B ) )

Proof of Theorem leadd2dd
StepHypRef Expression
1 leadd1dd.4 . 2  |-  ( ph  ->  A  <_  B )
2 leidd.1 . . 3  |-  ( ph  ->  A  e.  RR )
3 ltnegd.2 . . 3  |-  ( ph  ->  B  e.  RR )
4 ltadd1d.3 . . 3  |-  ( ph  ->  C  e.  RR )
52, 3, 4leadd2d 10035 . 2  |-  ( ph  ->  ( A  <_  B  <->  ( C  +  A )  <_  ( C  +  B ) ) )
61, 5mpbid 210 1  |-  ( ph  ->  ( C  +  A
)  <_  ( C  +  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1758   class class class wbr 4390  (class class class)co 6190   RRcr 9382    + caddc 9386    <_ cle 9520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-op 3982  df-uni 4190  df-br 4391  df-opab 4449  df-mpt 4450  df-id 4734  df-po 4739  df-so 4740  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-ov 6193  df-er 7201  df-en 7411  df-dom 7412  df-sdom 7413  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525
This theorem is referenced by:  expmulnbnd  12097  discr1  12101  hashun2  12248  abstri  12920  iseraltlem2  13262  prmreclem4  14082  tchcphlem1  20866  trirn  21015  nulmbl2  21134  voliunlem1  21147  uniioombllem4  21182  itg2split  21343  ulmcn  21980  abslogle  22183  emcllem2  22506  chtublem  22666  chtub  22667  logfaclbnd  22677  bcmax  22733  chebbnd1lem2  22835  rplogsumlem1  22849  selberglem2  22911  selbergb  22914  chpdifbndlem1  22918  pntpbnd1a  22950  pntpbnd2  22952  pntibndlem2  22956  pntibndlem3  22957  pntlemg  22963  pntlemr  22967  pntlemk  22971  pntlemo  22972  ostth2lem3  23000  smcnlem  24227  minvecolem3  24412  staddi  25785  stadd3i  25787  nexple  26582  lgambdd  27157  rescon  27269  itg2addnc  28584  ftc1anclem8  28612  pell1qrgaplem  29352  stoweidlem11  29944  stoweidlem26  29959  stirlinglem8  30014  stirlinglem12  30018  p1lep2  30315
  Copyright terms: Public domain W3C validator