MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  le0neg1d Structured version   Unicode version

Theorem le0neg1d 10084
Description: Comparison of a number and its negative to zero. (Contributed by Mario Carneiro, 27-May-2016.)
Hypothesis
Ref Expression
leidd.1  |-  ( ph  ->  A  e.  RR )
Assertion
Ref Expression
le0neg1d  |-  ( ph  ->  ( A  <_  0  <->  0  <_  -u A ) )

Proof of Theorem le0neg1d
StepHypRef Expression
1 leidd.1 . 2  |-  ( ph  ->  A  e.  RR )
2 le0neg1 10021 . 2  |-  ( A  e.  RR  ->  ( A  <_  0  <->  0  <_  -u A ) )
31, 2syl 17 1  |-  ( ph  ->  ( A  <_  0  <->  0  <_  -u A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    e. wcel 1842   class class class wbr 4394   RRcr 9441   0cc0 9442    <_ cle 9579   -ucneg 9762
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6530  ax-resscn 9499  ax-1cn 9500  ax-icn 9501  ax-addcl 9502  ax-addrcl 9503  ax-mulcl 9504  ax-mulrcl 9505  ax-mulcom 9506  ax-addass 9507  ax-mulass 9508  ax-distr 9509  ax-i2m1 9510  ax-1ne0 9511  ax-1rid 9512  ax-rnegex 9513  ax-rrecex 9514  ax-cnre 9515  ax-pre-lttri 9516  ax-pre-lttrn 9517  ax-pre-ltadd 9518
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-op 3978  df-uni 4191  df-br 4395  df-opab 4453  df-mpt 4454  df-id 4737  df-po 4743  df-so 4744  df-xp 4948  df-rel 4949  df-cnv 4950  df-co 4951  df-dm 4952  df-rn 4953  df-res 4954  df-ima 4955  df-iota 5489  df-fun 5527  df-fn 5528  df-f 5529  df-f1 5530  df-fo 5531  df-f1o 5532  df-fv 5533  df-riota 6196  df-ov 6237  df-oprab 6238  df-mpt2 6239  df-er 7268  df-en 7475  df-dom 7476  df-sdom 7477  df-pnf 9580  df-mnf 9581  df-xr 9582  df-ltxr 9583  df-le 9584  df-sub 9763  df-neg 9764
This theorem is referenced by:  mulle0b  10374  0mnnnnn0  10789  sqeqd  13055  cnpart  13129  prmirred  18724  xrhmeo  21630  pjthlem1  22036  mbfposr  22243  dvfsumlem2  22612  coseq0negpitopi  23080  tanord  23109  cxpsqrtlem  23269  asinlem3a  23418  atanlogadd  23462  lgsneg  23867  pntpbnd1  24044  pjhthlem1  26603  xrge0iifcnv  28248  itgaddnclem2  31428  monotoddzzfi  35220  oddcomabszz  35222  jm2.24  35243  acongeq  35263
  Copyright terms: Public domain W3C validator