Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualset Structured version   Unicode version

Theorem ldualset 33940
Description: Define the (left) dual of a left vector space (or module) in which the vectors are functionals. In many texts, this is defined as a right vector space, but by reversing the multiplication we achieve a left vector space, as is done in definition of dual vector space in [Holland95] p. 218. This allows us to reuse our existing collection of left vector space theorems. Note the operation reversal in the scalar product to allow us to use the original scalar ring instead of the oppr ring, for convenience. (Contributed by NM, 18-Oct-2014.)
Hypotheses
Ref Expression
ldualset.v  |-  V  =  ( Base `  W
)
ldualset.a  |-  .+  =  ( +g  `  R )
ldualset.p  |-  .+b  =  (  oF  .+  |`  ( F  X.  F ) )
ldualset.f  |-  F  =  (LFnl `  W )
ldualset.d  |-  D  =  (LDual `  W )
ldualset.r  |-  R  =  (Scalar `  W )
ldualset.k  |-  K  =  ( Base `  R
)
ldualset.t  |-  .x.  =  ( .r `  R )
ldualset.o  |-  O  =  (oppr
`  R )
ldualset.s  |-  .xb  =  ( k  e.  K ,  f  e.  F  |->  ( f  oF  .x.  ( V  X.  { k } ) ) )
ldualset.w  |-  ( ph  ->  W  e.  X )
Assertion
Ref Expression
ldualset  |-  ( ph  ->  D  =  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
Distinct variable group:    f, k, W
Allowed substitution hints:    ph( f, k)    D( f, k)    .+ ( f, k)    .+b ( f, k)    R( f, k)    .xb ( f, k)    .x. ( f,
k)    F( f, k)    K( f, k)    O( f, k)    V( f, k)    X( f, k)

Proof of Theorem ldualset
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 ldualset.w . 2  |-  ( ph  ->  W  e.  X )
2 elex 3122 . 2  |-  ( W  e.  X  ->  W  e.  _V )
3 ldualset.d . . 3  |-  D  =  (LDual `  W )
4 fveq2 5866 . . . . . . . 8  |-  ( w  =  W  ->  (LFnl `  w )  =  (LFnl `  W ) )
5 ldualset.f . . . . . . . 8  |-  F  =  (LFnl `  W )
64, 5syl6eqr 2526 . . . . . . 7  |-  ( w  =  W  ->  (LFnl `  w )  =  F )
76opeq2d 4220 . . . . . 6  |-  ( w  =  W  ->  <. ( Base `  ndx ) ,  (LFnl `  w ) >.  =  <. ( Base `  ndx ) ,  F >. )
8 fveq2 5866 . . . . . . . . . . . . 13  |-  ( w  =  W  ->  (Scalar `  w )  =  (Scalar `  W ) )
9 ldualset.r . . . . . . . . . . . . 13  |-  R  =  (Scalar `  W )
108, 9syl6eqr 2526 . . . . . . . . . . . 12  |-  ( w  =  W  ->  (Scalar `  w )  =  R )
1110fveq2d 5870 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( +g  `  (Scalar `  w
) )  =  ( +g  `  R ) )
12 ldualset.a . . . . . . . . . . 11  |-  .+  =  ( +g  `  R )
1311, 12syl6eqr 2526 . . . . . . . . . 10  |-  ( w  =  W  ->  ( +g  `  (Scalar `  w
) )  =  .+  )
14 ofeq 6526 . . . . . . . . . 10  |-  ( ( +g  `  (Scalar `  w ) )  = 
.+  ->  oF ( +g  `  (Scalar `  w ) )  =  oF  .+  )
1513, 14syl 16 . . . . . . . . 9  |-  ( w  =  W  ->  oF ( +g  `  (Scalar `  w ) )  =  oF  .+  )
166, 6xpeq12d 5024 . . . . . . . . 9  |-  ( w  =  W  ->  (
(LFnl `  w )  X.  (LFnl `  w )
)  =  ( F  X.  F ) )
1715, 16reseq12d 5274 . . . . . . . 8  |-  ( w  =  W  ->  (  oF ( +g  `  (Scalar `  w )
)  |`  ( (LFnl `  w )  X.  (LFnl `  w ) ) )  =  (  oF  .+  |`  ( F  X.  F ) ) )
18 ldualset.p . . . . . . . 8  |-  .+b  =  (  oF  .+  |`  ( F  X.  F ) )
1917, 18syl6eqr 2526 . . . . . . 7  |-  ( w  =  W  ->  (  oF ( +g  `  (Scalar `  w )
)  |`  ( (LFnl `  w )  X.  (LFnl `  w ) ) )  =  .+b  )
2019opeq2d 4220 . . . . . 6  |-  ( w  =  W  ->  <. ( +g  `  ndx ) ,  (  oF ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >.  =  <. ( +g  `  ndx ) ,  .+b  >. )
2110fveq2d 5870 . . . . . . . 8  |-  ( w  =  W  ->  (oppr `  (Scalar `  w ) )  =  (oppr
`  R ) )
22 ldualset.o . . . . . . . 8  |-  O  =  (oppr
`  R )
2321, 22syl6eqr 2526 . . . . . . 7  |-  ( w  =  W  ->  (oppr `  (Scalar `  w ) )  =  O )
2423opeq2d 4220 . . . . . 6  |-  ( w  =  W  ->  <. (Scalar ` 
ndx ) ,  (oppr `  (Scalar `  w ) )
>.  =  <. (Scalar `  ndx ) ,  O >. )
257, 20, 24tpeq123d 4121 . . . . 5  |-  ( w  =  W  ->  { <. (
Base `  ndx ) ,  (LFnl `  w ) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  =  { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. } )
2610fveq2d 5870 . . . . . . . . . 10  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  (
Base `  R )
)
27 ldualset.k . . . . . . . . . 10  |-  K  =  ( Base `  R
)
2826, 27syl6eqr 2526 . . . . . . . . 9  |-  ( w  =  W  ->  ( Base `  (Scalar `  w
) )  =  K )
2910fveq2d 5870 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( .r `  (Scalar `  w
) )  =  ( .r `  R ) )
30 ldualset.t . . . . . . . . . . . 12  |-  .x.  =  ( .r `  R )
3129, 30syl6eqr 2526 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( .r `  (Scalar `  w
) )  =  .x.  )
32 ofeq 6526 . . . . . . . . . . 11  |-  ( ( .r `  (Scalar `  w ) )  = 
.x.  ->  oF ( .r `  (Scalar `  w ) )  =  oF  .x.  )
3331, 32syl 16 . . . . . . . . . 10  |-  ( w  =  W  ->  oF ( .r `  (Scalar `  w ) )  =  oF  .x.  )
34 eqidd 2468 . . . . . . . . . 10  |-  ( w  =  W  ->  f  =  f )
35 fveq2 5866 . . . . . . . . . . . 12  |-  ( w  =  W  ->  ( Base `  w )  =  ( Base `  W
) )
36 ldualset.v . . . . . . . . . . . 12  |-  V  =  ( Base `  W
)
3735, 36syl6eqr 2526 . . . . . . . . . . 11  |-  ( w  =  W  ->  ( Base `  w )  =  V )
3837xpeq1d 5022 . . . . . . . . . 10  |-  ( w  =  W  ->  (
( Base `  w )  X.  { k } )  =  ( V  X.  { k } ) )
3933, 34, 38oveq123d 6305 . . . . . . . . 9  |-  ( w  =  W  ->  (
f  oF ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) )  =  ( f  oF  .x.  ( V  X.  { k } ) ) )
4028, 6, 39mpt2eq123dv 6343 . . . . . . . 8  |-  ( w  =  W  ->  (
k  e.  ( Base `  (Scalar `  w )
) ,  f  e.  (LFnl `  w )  |->  ( f  oF ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )  =  ( k  e.  K ,  f  e.  F  |->  ( f  oF  .x.  ( V  X.  { k } ) ) ) )
41 ldualset.s . . . . . . . 8  |-  .xb  =  ( k  e.  K ,  f  e.  F  |->  ( f  oF  .x.  ( V  X.  { k } ) ) )
4240, 41syl6eqr 2526 . . . . . . 7  |-  ( w  =  W  ->  (
k  e.  ( Base `  (Scalar `  w )
) ,  f  e.  (LFnl `  w )  |->  ( f  oF ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )  =  .xb  )
4342opeq2d 4220 . . . . . 6  |-  ( w  =  W  ->  <. ( .s `  ndx ) ,  ( k  e.  (
Base `  (Scalar `  w
) ) ,  f  e.  (LFnl `  w
)  |->  ( f  oF ( .r `  (Scalar `  w ) ) ( ( Base `  w
)  X.  { k } ) ) )
>.  =  <. ( .s
`  ndx ) ,  .xb  >.
)
4443sneqd 4039 . . . . 5  |-  ( w  =  W  ->  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  oF ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. }  =  { <. ( .s `  ndx ) ,  .xb  >. } )
4525, 44uneq12d 3659 . . . 4  |-  ( w  =  W  ->  ( { <. ( Base `  ndx ) ,  (LFnl `  w
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  u.  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  oF ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. } )  =  ( { <. ( Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
46 df-ldual 33939 . . . 4  |- LDual  =  ( w  e.  _V  |->  ( { <. ( Base `  ndx ) ,  (LFnl `  w
) >. ,  <. ( +g  `  ndx ) ,  (  oF ( +g  `  (Scalar `  w ) )  |`  ( (LFnl `  w )  X.  (LFnl `  w )
) ) >. ,  <. (Scalar `  ndx ) ,  (oppr `  (Scalar `  w ) )
>. }  u.  { <. ( .s `  ndx ) ,  ( k  e.  ( Base `  (Scalar `  w ) ) ,  f  e.  (LFnl `  w )  |->  ( f  oF ( .r
`  (Scalar `  w )
) ( ( Base `  w )  X.  {
k } ) ) ) >. } ) )
47 tpex 6583 . . . . 5  |-  { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  e.  _V
48 snex 4688 . . . . 5  |-  { <. ( .s `  ndx ) ,  .xb  >. }  e.  _V
4947, 48unex 6582 . . . 4  |-  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } )  e. 
_V
5045, 46, 49fvmpt 5950 . . 3  |-  ( W  e.  _V  ->  (LDual `  W )  =  ( { <. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
513, 50syl5eq 2520 . 2  |-  ( W  e.  _V  ->  D  =  ( { <. (
Base `  ndx ) ,  F >. ,  <. ( +g  `  ndx ) , 
.+b  >. ,  <. (Scalar ` 
ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
521, 2, 513syl 20 1  |-  ( ph  ->  D  =  ( {
<. ( Base `  ndx ) ,  F >. , 
<. ( +g  `  ndx ) ,  .+b  >. ,  <. (Scalar `  ndx ) ,  O >. }  u.  { <. ( .s `  ndx ) ,  .xb  >. } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1379    e. wcel 1767   _Vcvv 3113    u. cun 3474   {csn 4027   {ctp 4031   <.cop 4033    X. cxp 4997    |` cres 5001   ` cfv 5588  (class class class)co 6284    |-> cmpt2 6286    oFcof 6522   ndxcnx 14487   Basecbs 14490   +g cplusg 14555   .rcmulr 14556  Scalarcsca 14558   .scvsca 14559  opprcoppr 17072  LFnlclfn 33872  LDualcld 33938
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pr 4686  ax-un 6576
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-rab 2823  df-v 3115  df-sbc 3332  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-res 5011  df-iota 5551  df-fun 5590  df-fv 5596  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-of 6524  df-ldual 33939
This theorem is referenced by:  ldualvbase  33941  ldualfvadd  33943  ldualsca  33947  ldualfvs  33951
  Copyright terms: Public domain W3C validator