Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldilco Structured version   Unicode version

Theorem ldilco 34787
Description: The composition of two lattice automorphisms is a lattice automorphism. (Contributed by NM, 19-Apr-2013.)
Hypotheses
Ref Expression
ldilco.h  |-  H  =  ( LHyp `  K
)
ldilco.d  |-  D  =  ( ( LDil `  K
) `  W )
Assertion
Ref Expression
ldilco  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  ( F  o.  G )  e.  D
)

Proof of Theorem ldilco
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simp1l 1015 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  K  e.  V )
2 ldilco.h . . . . 5  |-  H  =  ( LHyp `  K
)
3 eqid 2460 . . . . 5  |-  ( LAut `  K )  =  (
LAut `  K )
4 ldilco.d . . . . 5  |-  D  =  ( ( LDil `  K
) `  W )
52, 3, 4ldillaut 34782 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D )  ->  F  e.  ( LAut `  K
) )
653adant3 1011 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  F  e.  ( LAut `  K )
)
72, 3, 4ldillaut 34782 . . . 4  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  G  e.  D )  ->  G  e.  ( LAut `  K
) )
873adant2 1010 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  G  e.  ( LAut `  K )
)
93lautco 34768 . . 3  |-  ( ( K  e.  V  /\  F  e.  ( LAut `  K )  /\  G  e.  ( LAut `  K
) )  ->  ( F  o.  G )  e.  ( LAut `  K
) )
101, 6, 8, 9syl3anc 1223 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  ( F  o.  G )  e.  (
LAut `  K )
)
11 simp11 1021 . . . . . . . 8  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( K  e.  V  /\  W  e.  H ) )
12 simp13 1023 . . . . . . . 8  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  G  e.  D )
13 eqid 2460 . . . . . . . . 9  |-  ( Base `  K )  =  (
Base `  K )
1413, 2, 4ldil1o 34783 . . . . . . . 8  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  G  e.  D )  ->  G : ( Base `  K
)
-1-1-onto-> ( Base `  K )
)
1511, 12, 14syl2anc 661 . . . . . . 7  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  G :
( Base `  K ) -1-1-onto-> ( Base `  K ) )
16 f1of 5807 . . . . . . 7  |-  ( G : ( Base `  K
)
-1-1-onto-> ( Base `  K )  ->  G : ( Base `  K ) --> ( Base `  K ) )
1715, 16syl 16 . . . . . 6  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  G :
( Base `  K ) --> ( Base `  K )
)
18 simp2 992 . . . . . 6  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  x  e.  ( Base `  K )
)
19 fvco3 5935 . . . . . 6  |-  ( ( G : ( Base `  K ) --> ( Base `  K )  /\  x  e.  ( Base `  K
) )  ->  (
( F  o.  G
) `  x )  =  ( F `  ( G `  x ) ) )
2017, 18, 19syl2anc 661 . . . . 5  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( ( F  o.  G ) `  x )  =  ( F `  ( G `
 x ) ) )
21 simp3 993 . . . . . . 7  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  x ( le `  K ) W )
22 eqid 2460 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
2313, 22, 2, 4ldilval 34784 . . . . . . 7  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  G  e.  D  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )  ->  ( G `  x )  =  x )
2411, 12, 18, 21, 23syl112anc 1227 . . . . . 6  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( G `  x )  =  x )
2524fveq2d 5861 . . . . 5  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( F `  ( G `  x
) )  =  ( F `  x ) )
26 simp12 1022 . . . . . 6  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  F  e.  D )
2713, 22, 2, 4ldilval 34784 . . . . . 6  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  ( x  e.  ( Base `  K
)  /\  x ( le `  K ) W ) )  ->  ( F `  x )  =  x )
2811, 26, 18, 21, 27syl112anc 1227 . . . . 5  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( F `  x )  =  x )
2920, 25, 283eqtrd 2505 . . . 4  |-  ( ( ( ( K  e.  V  /\  W  e.  H )  /\  F  e.  D  /\  G  e.  D )  /\  x  e.  ( Base `  K
)  /\  x ( le `  K ) W )  ->  ( ( F  o.  G ) `  x )  =  x )
30293exp 1190 . . 3  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  ( x  e.  ( Base `  K
)  ->  ( x
( le `  K
) W  ->  (
( F  o.  G
) `  x )  =  x ) ) )
3130ralrimiv 2869 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  A. x  e.  ( Base `  K
) ( x ( le `  K ) W  ->  ( ( F  o.  G ) `  x )  =  x ) )
3213, 22, 2, 3, 4isldil 34781 . . 3  |-  ( ( K  e.  V  /\  W  e.  H )  ->  ( ( F  o.  G )  e.  D  <->  ( ( F  o.  G
)  e.  ( LAut `  K )  /\  A. x  e.  ( Base `  K ) ( x ( le `  K
) W  ->  (
( F  o.  G
) `  x )  =  x ) ) ) )
33323ad2ant1 1012 . 2  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  ( ( F  o.  G )  e.  D  <->  ( ( F  o.  G )  e.  ( LAut `  K
)  /\  A. x  e.  ( Base `  K
) ( x ( le `  K ) W  ->  ( ( F  o.  G ) `  x )  =  x ) ) ) )
3410, 31, 33mpbir2and 915 1  |-  ( ( ( K  e.  V  /\  W  e.  H
)  /\  F  e.  D  /\  G  e.  D
)  ->  ( F  o.  G )  e.  D
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   class class class wbr 4440    o. ccom 4996   -->wf 5575   -1-1-onto->wf1o 5578   ` cfv 5579   Basecbs 14479   lecple 14551   LHypclh 34655   LAutclaut 34656   LDilcldil 34771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-map 7412  df-laut 34660  df-ldil 34775
This theorem is referenced by:  ltrnco  35390
  Copyright terms: Public domain W3C validator