Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem5 Unicode version

Theorem lcvexchlem5 29521
Description: Lemma for lcvexch 29522. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s  |-  S  =  ( LSubSp `  W )
lcvexch.p  |-  .(+)  =  (
LSSum `  W )
lcvexch.c  |-  C  =  (  <oLL  `  W )
lcvexch.w  |-  ( ph  ->  W  e.  LMod )
lcvexch.t  |-  ( ph  ->  T  e.  S )
lcvexch.u  |-  ( ph  ->  U  e.  S )
lcvexch.g  |-  ( ph  ->  ( T  i^i  U
) C U )
Assertion
Ref Expression
lcvexchlem5  |-  ( ph  ->  T C ( T 
.(+)  U ) )

Proof of Theorem lcvexchlem5
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4  |-  S  =  ( LSubSp `  W )
2 lcvexch.c . . . 4  |-  C  =  (  <oLL  `  W )
3 lcvexch.w . . . 4  |-  ( ph  ->  W  e.  LMod )
4 lcvexch.t . . . . 5  |-  ( ph  ->  T  e.  S )
5 lcvexch.u . . . . 5  |-  ( ph  ->  U  e.  S )
61lssincl 15996 . . . . 5  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  i^i  U )  e.  S )
73, 4, 5, 6syl3anc 1184 . . . 4  |-  ( ph  ->  ( T  i^i  U
)  e.  S )
8 lcvexch.g . . . 4  |-  ( ph  ->  ( T  i^i  U
) C U )
91, 2, 3, 7, 5, 8lcvpss 29507 . . 3  |-  ( ph  ->  ( T  i^i  U
)  C.  U )
10 lcvexch.p . . . 4  |-  .(+)  =  (
LSSum `  W )
111, 10, 2, 3, 4, 5lcvexchlem1 29517 . . 3  |-  ( ph  ->  ( T  C.  ( T  .(+)  U )  <->  ( T  i^i  U )  C.  U
) )
129, 11mpbird 224 . 2  |-  ( ph  ->  T  C.  ( T 
.(+)  U ) )
13 simp3l 985 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  T  C_  s
)
14 ssrin 3526 . . . . . . . 8  |-  ( T 
C_  s  ->  ( T  i^i  U )  C_  ( s  i^i  U
) )
1513, 14syl 16 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( T  i^i  U )  C_  (
s  i^i  U )
)
16 inss2 3522 . . . . . . 7  |-  ( s  i^i  U )  C_  U
1715, 16jctir 525 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
) )
1883ad2ant1 978 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( T  i^i  U ) C U )
191, 2, 3, 7, 5lcvbr3 29506 . . . . . . . . . 10  |-  ( ph  ->  ( ( T  i^i  U ) C U  <->  ( ( T  i^i  U )  C.  U  /\  A. r  e.  S  ( ( ( T  i^i  U ) 
C_  r  /\  r  C_  U )  ->  (
r  =  ( T  i^i  U )  \/  r  =  U ) ) ) ) )
2019adantr 452 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S )  ->  (
( T  i^i  U
) C U  <->  ( ( T  i^i  U )  C.  U  /\  A. r  e.  S  ( ( ( T  i^i  U ) 
C_  r  /\  r  C_  U )  ->  (
r  =  ( T  i^i  U )  \/  r  =  U ) ) ) ) )
213adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  W  e.  LMod )
22 simpr 448 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  s  e.  S )
235adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  U  e.  S )
241lssincl 15996 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  s  e.  S  /\  U  e.  S )  ->  (
s  i^i  U )  e.  S )
2521, 22, 23, 24syl3anc 1184 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  S )  ->  (
s  i^i  U )  e.  S )
26 sseq2 3330 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  i^i 
U )  ->  (
( T  i^i  U
)  C_  r  <->  ( T  i^i  U )  C_  (
s  i^i  U )
) )
27 sseq1 3329 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  i^i 
U )  ->  (
r  C_  U  <->  ( s  i^i  U )  C_  U
) )
2826, 27anbi12d 692 . . . . . . . . . . . . 13  |-  ( r  =  ( s  i^i 
U )  ->  (
( ( T  i^i  U )  C_  r  /\  r  C_  U )  <->  ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
) ) )
29 eqeq1 2410 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  i^i 
U )  ->  (
r  =  ( T  i^i  U )  <->  ( s  i^i  U )  =  ( T  i^i  U ) ) )
30 eqeq1 2410 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  i^i 
U )  ->  (
r  =  U  <->  ( s  i^i  U )  =  U ) )
3129, 30orbi12d 691 . . . . . . . . . . . . 13  |-  ( r  =  ( s  i^i 
U )  ->  (
( r  =  ( T  i^i  U )  \/  r  =  U )  <->  ( ( s  i^i  U )  =  ( T  i^i  U
)  \/  ( s  i^i  U )  =  U ) ) )
3228, 31imbi12d 312 . . . . . . . . . . . 12  |-  ( r  =  ( s  i^i 
U )  ->  (
( ( ( T  i^i  U )  C_  r  /\  r  C_  U
)  ->  ( r  =  ( T  i^i  U )  \/  r  =  U ) )  <->  ( (
( T  i^i  U
)  C_  ( s  i^i  U )  /\  (
s  i^i  U )  C_  U )  ->  (
( s  i^i  U
)  =  ( T  i^i  U )  \/  ( s  i^i  U
)  =  U ) ) ) )
3332rspcv 3008 . . . . . . . . . . 11  |-  ( ( s  i^i  U )  e.  S  ->  ( A. r  e.  S  ( ( ( T  i^i  U )  C_  r  /\  r  C_  U
)  ->  ( r  =  ( T  i^i  U )  \/  r  =  U ) )  -> 
( ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
)  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) ) ) )
3425, 33syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  S )  ->  ( A. r  e.  S  ( ( ( T  i^i  U )  C_  r  /\  r  C_  U
)  ->  ( r  =  ( T  i^i  U )  \/  r  =  U ) )  -> 
( ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
)  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) ) ) )
3534adantld 454 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S )  ->  (
( ( T  i^i  U )  C.  U  /\  A. r  e.  S  ( ( ( T  i^i  U )  C_  r  /\  r  C_  U )  -> 
( r  =  ( T  i^i  U )  \/  r  =  U ) ) )  -> 
( ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
)  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) ) ) )
3620, 35sylbid 207 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S )  ->  (
( T  i^i  U
) C U  -> 
( ( ( T  i^i  U )  C_  ( s  i^i  U
)  /\  ( s  i^i  U )  C_  U
)  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) ) ) )
37363adant3 977 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( ( T  i^i  U ) C U  ->  ( (
( T  i^i  U
)  C_  ( s  i^i  U )  /\  (
s  i^i  U )  C_  U )  ->  (
( s  i^i  U
)  =  ( T  i^i  U )  \/  ( s  i^i  U
)  =  U ) ) ) )
3818, 37mpd 15 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
( T  i^i  U
)  C_  ( s  i^i  U )  /\  (
s  i^i  U )  C_  U )  ->  (
( s  i^i  U
)  =  ( T  i^i  U )  \/  ( s  i^i  U
)  =  U ) ) )
3917, 38mpd 15 . . . . 5  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  \/  ( s  i^i  U )  =  U ) )
40 oveq1 6047 . . . . . . 7  |-  ( ( s  i^i  U )  =  ( T  i^i  U )  ->  ( (
s  i^i  U )  .(+)  T )  =  ( ( T  i^i  U
)  .(+)  T ) )
4133ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  W  e.  LMod )
4243ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  T  e.  S )
4353ad2ant1 978 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  U  e.  S )
44 simp2 958 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  s  e.  S )
45 simp3r 986 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  s  C_  ( T  .(+)  U ) )
461, 10, 2, 41, 42, 43, 44, 13, 45lcvexchlem3 29519 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
s  i^i  U )  .(+)  T )  =  s )
471lsssssubg 15989 . . . . . . . . . . . 12  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
483, 47syl 16 . . . . . . . . . . 11  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
4948, 7sseldd 3309 . . . . . . . . . 10  |-  ( ph  ->  ( T  i^i  U
)  e.  (SubGrp `  W ) )
5048, 4sseldd 3309 . . . . . . . . . 10  |-  ( ph  ->  T  e.  (SubGrp `  W ) )
51 inss1 3521 . . . . . . . . . . 11  |-  ( T  i^i  U )  C_  T
5251a1i 11 . . . . . . . . . 10  |-  ( ph  ->  ( T  i^i  U
)  C_  T )
5310lsmss1 15253 . . . . . . . . . 10  |-  ( ( ( T  i^i  U
)  e.  (SubGrp `  W )  /\  T  e.  (SubGrp `  W )  /\  ( T  i^i  U
)  C_  T )  ->  ( ( T  i^i  U )  .(+)  T )  =  T )
5449, 50, 52, 53syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( ( T  i^i  U )  .(+)  T )  =  T )
55543ad2ant1 978 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( ( T  i^i  U )  .(+)  T )  =  T )
5646, 55eqeq12d 2418 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
( s  i^i  U
)  .(+)  T )  =  ( ( T  i^i  U )  .(+)  T )  <->  s  =  T ) )
5740, 56syl5ib 211 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
s  i^i  U )  =  ( T  i^i  U )  ->  s  =  T ) )
58 oveq1 6047 . . . . . . 7  |-  ( ( s  i^i  U )  =  U  ->  (
( s  i^i  U
)  .(+)  T )  =  ( U  .(+)  T ) )
59 lmodabl 15946 . . . . . . . . . . 11  |-  ( W  e.  LMod  ->  W  e. 
Abel )
603, 59syl 16 . . . . . . . . . 10  |-  ( ph  ->  W  e.  Abel )
6148, 5sseldd 3309 . . . . . . . . . 10  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
6210lsmcom 15428 . . . . . . . . . 10  |-  ( ( W  e.  Abel  /\  U  e.  (SubGrp `  W )  /\  T  e.  (SubGrp `  W ) )  -> 
( U  .(+)  T )  =  ( T  .(+)  U ) )
6360, 61, 50, 62syl3anc 1184 . . . . . . . . 9  |-  ( ph  ->  ( U  .(+)  T )  =  ( T  .(+)  U ) )
64633ad2ant1 978 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( U  .(+) 
T )  =  ( T  .(+)  U )
)
6546, 64eqeq12d 2418 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
( s  i^i  U
)  .(+)  T )  =  ( U  .(+)  T )  <-> 
s  =  ( T 
.(+)  U ) ) )
6658, 65syl5ib 211 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
s  i^i  U )  =  U  ->  s  =  ( T  .(+)  U ) ) )
6757, 66orim12d 812 . . . . 5  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( (
( s  i^i  U
)  =  ( T  i^i  U )  \/  ( s  i^i  U
)  =  U )  ->  ( s  =  T  \/  s  =  ( T  .(+)  U ) ) ) )
6839, 67mpd 15 . . . 4  |-  ( (
ph  /\  s  e.  S  /\  ( T  C_  s  /\  s  C_  ( T  .(+)  U ) ) )  ->  ( s  =  T  \/  s  =  ( T  .(+)  U ) ) )
69683exp 1152 . . 3  |-  ( ph  ->  ( s  e.  S  ->  ( ( T  C_  s  /\  s  C_  ( T  .(+)  U ) )  ->  ( s  =  T  \/  s  =  ( T  .(+)  U ) ) ) ) )
7069ralrimiv 2748 . 2  |-  ( ph  ->  A. s  e.  S  ( ( T  C_  s  /\  s  C_  ( T  .(+)  U ) )  ->  ( s  =  T  \/  s  =  ( T  .(+)  U ) ) ) )
711, 10lsmcl 16110 . . . 4  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  .(+)  U )  e.  S )
723, 4, 5, 71syl3anc 1184 . . 3  |-  ( ph  ->  ( T  .(+)  U )  e.  S )
731, 2, 3, 4, 72lcvbr3 29506 . 2  |-  ( ph  ->  ( T C ( T  .(+)  U )  <->  ( T  C.  ( T 
.(+)  U )  /\  A. s  e.  S  (
( T  C_  s  /\  s  C_  ( T 
.(+)  U ) )  -> 
( s  =  T  \/  s  =  ( T  .(+)  U )
) ) ) ) )
7412, 70, 73mpbir2and 889 1  |-  ( ph  ->  T C ( T 
.(+)  U ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   A.wral 2666    i^i cin 3279    C_ wss 3280    C. wpss 3281   class class class wbr 4172   ` cfv 5413  (class class class)co 6040  SubGrpcsubg 14893   LSSumclsm 15223   Abelcabel 15368   LModclmod 15905   LSubSpclss 15963    <oLL clcv 29501
This theorem is referenced by:  lcvexch  29522
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-0g 13682  df-mre 13766  df-mrc 13767  df-acs 13769  df-mnd 14645  df-submnd 14694  df-grp 14767  df-minusg 14768  df-sbg 14769  df-subg 14896  df-cntz 15071  df-oppg 15097  df-lsm 15225  df-cmn 15369  df-abl 15370  df-mgp 15604  df-rng 15618  df-ur 15620  df-lmod 15907  df-lss 15964  df-lcv 29502
  Copyright terms: Public domain W3C validator