Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcvexchlem4 Structured version   Unicode version

Theorem lcvexchlem4 34235
Description: Lemma for lcvexch 34237. (Contributed by NM, 10-Jan-2015.)
Hypotheses
Ref Expression
lcvexch.s  |-  S  =  ( LSubSp `  W )
lcvexch.p  |-  .(+)  =  (
LSSum `  W )
lcvexch.c  |-  C  =  (  <oLL  `  W )
lcvexch.w  |-  ( ph  ->  W  e.  LMod )
lcvexch.t  |-  ( ph  ->  T  e.  S )
lcvexch.u  |-  ( ph  ->  U  e.  S )
lcvexch.f  |-  ( ph  ->  T C ( T 
.(+)  U ) )
Assertion
Ref Expression
lcvexchlem4  |-  ( ph  ->  ( T  i^i  U
) C U )

Proof of Theorem lcvexchlem4
Dummy variables  s 
r are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcvexch.s . . . 4  |-  S  =  ( LSubSp `  W )
2 lcvexch.c . . . 4  |-  C  =  (  <oLL  `  W )
3 lcvexch.w . . . 4  |-  ( ph  ->  W  e.  LMod )
4 lcvexch.t . . . 4  |-  ( ph  ->  T  e.  S )
5 lcvexch.u . . . . 5  |-  ( ph  ->  U  e.  S )
6 lcvexch.p . . . . . 6  |-  .(+)  =  (
LSSum `  W )
71, 6lsmcl 17600 . . . . 5  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  .(+)  U )  e.  S )
83, 4, 5, 7syl3anc 1228 . . . 4  |-  ( ph  ->  ( T  .(+)  U )  e.  S )
9 lcvexch.f . . . 4  |-  ( ph  ->  T C ( T 
.(+)  U ) )
101, 2, 3, 4, 8, 9lcvpss 34222 . . 3  |-  ( ph  ->  T  C.  ( T  .(+) 
U ) )
111, 6, 2, 3, 4, 5lcvexchlem1 34232 . . 3  |-  ( ph  ->  ( T  C.  ( T  .(+)  U )  <->  ( T  i^i  U )  C.  U
) )
1210, 11mpbid 210 . 2  |-  ( ph  ->  ( T  i^i  U
)  C.  U )
1333ad2ant1 1017 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  W  e.  LMod )
141lsssssubg 17475 . . . . . . . . 9  |-  ( W  e.  LMod  ->  S  C_  (SubGrp `  W ) )
1513, 14syl 16 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  S  C_  (SubGrp `  W )
)
16 simp2 997 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  s  e.  S )
1715, 16sseldd 3510 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  s  e.  (SubGrp `  W )
)
1843ad2ant1 1017 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  T  e.  S )
1915, 18sseldd 3510 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  T  e.  (SubGrp `  W )
)
206lsmub2 16550 . . . . . . 7  |-  ( ( s  e.  (SubGrp `  W )  /\  T  e.  (SubGrp `  W )
)  ->  T  C_  (
s  .(+)  T ) )
2117, 19, 20syl2anc 661 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  T  C_  ( s  .(+)  T ) )
2253ad2ant1 1017 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  U  e.  S )
2315, 22sseldd 3510 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  U  e.  (SubGrp `  W )
)
24 simp3r 1025 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  s  C_  U )
256lsmless1 16552 . . . . . . . 8  |-  ( ( U  e.  (SubGrp `  W )  /\  T  e.  (SubGrp `  W )  /\  s  C_  U )  ->  ( s  .(+)  T )  C_  ( U  .(+) 
T ) )
2623, 19, 24, 25syl3anc 1228 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
s  .(+)  T )  C_  ( U  .(+)  T ) )
27 lmodabl 17428 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  W  e. 
Abel )
283, 27syl 16 . . . . . . . . 9  |-  ( ph  ->  W  e.  Abel )
293, 14syl 16 . . . . . . . . . 10  |-  ( ph  ->  S  C_  (SubGrp `  W
) )
3029, 4sseldd 3510 . . . . . . . . 9  |-  ( ph  ->  T  e.  (SubGrp `  W ) )
3129, 5sseldd 3510 . . . . . . . . 9  |-  ( ph  ->  U  e.  (SubGrp `  W ) )
326lsmcom 16737 . . . . . . . . 9  |-  ( ( W  e.  Abel  /\  T  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W ) )  -> 
( T  .(+)  U )  =  ( U  .(+)  T ) )
3328, 30, 31, 32syl3anc 1228 . . . . . . . 8  |-  ( ph  ->  ( T  .(+)  U )  =  ( U  .(+)  T ) )
34333ad2ant1 1017 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  ( T  .(+)  U )  =  ( U  .(+)  T ) )
3526, 34sseqtr4d 3546 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
s  .(+)  T )  C_  ( T  .(+)  U ) )
3693ad2ant1 1017 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  T C ( T  .(+)  U ) )
371, 2, 3, 4, 8lcvbr3 34221 . . . . . . . . . 10  |-  ( ph  ->  ( T C ( T  .(+)  U )  <->  ( T  C.  ( T  .(+) 
U )  /\  A. r  e.  S  (
( T  C_  r  /\  r  C_  ( T 
.(+)  U ) )  -> 
( r  =  T  \/  r  =  ( T  .(+)  U )
) ) ) ) )
3837adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S )  ->  ( T C ( T  .(+)  U )  <->  ( T  C.  ( T  .(+)  U )  /\  A. r  e.  S  ( ( T 
C_  r  /\  r  C_  ( T  .(+)  U ) )  ->  ( r  =  T  \/  r  =  ( T  .(+)  U ) ) ) ) ) )
393adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  W  e.  LMod )
40 simpr 461 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  s  e.  S )
414adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  s  e.  S )  ->  T  e.  S )
421, 6lsmcl 17600 . . . . . . . . . . . 12  |-  ( ( W  e.  LMod  /\  s  e.  S  /\  T  e.  S )  ->  (
s  .(+)  T )  e.  S )
4339, 40, 41, 42syl3anc 1228 . . . . . . . . . . 11  |-  ( (
ph  /\  s  e.  S )  ->  (
s  .(+)  T )  e.  S )
44 sseq2 3531 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  .(+)  T )  ->  ( T  C_  r  <->  T  C_  ( s 
.(+)  T ) ) )
45 sseq1 3530 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  .(+)  T )  ->  ( r  C_  ( T  .(+)  U )  <-> 
( s  .(+)  T ) 
C_  ( T  .(+)  U ) ) )
4644, 45anbi12d 710 . . . . . . . . . . . . 13  |-  ( r  =  ( s  .(+)  T )  ->  ( ( T  C_  r  /\  r  C_  ( T  .(+)  U ) )  <->  ( T  C_  ( s  .(+)  T )  /\  ( s  .(+)  T )  C_  ( T  .(+) 
U ) ) ) )
47 eqeq1 2471 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  .(+)  T )  ->  ( r  =  T  <->  ( s  .(+)  T )  =  T ) )
48 eqeq1 2471 . . . . . . . . . . . . . 14  |-  ( r  =  ( s  .(+)  T )  ->  ( r  =  ( T  .(+)  U )  <->  ( s  .(+)  T )  =  ( T 
.(+)  U ) ) )
4947, 48orbi12d 709 . . . . . . . . . . . . 13  |-  ( r  =  ( s  .(+)  T )  ->  ( (
r  =  T  \/  r  =  ( T  .(+) 
U ) )  <->  ( (
s  .(+)  T )  =  T  \/  ( s 
.(+)  T )  =  ( T  .(+)  U )
) ) )
5046, 49imbi12d 320 . . . . . . . . . . . 12  |-  ( r  =  ( s  .(+)  T )  ->  ( (
( T  C_  r  /\  r  C_  ( T 
.(+)  U ) )  -> 
( r  =  T  \/  r  =  ( T  .(+)  U )
) )  <->  ( ( T  C_  ( s  .(+)  T )  /\  ( s 
.(+)  T )  C_  ( T  .(+)  U ) )  ->  ( ( s 
.(+)  T )  =  T  \/  ( s  .(+)  T )  =  ( T 
.(+)  U ) ) ) ) )
5150rspcv 3215 . . . . . . . . . . 11  |-  ( ( s  .(+)  T )  e.  S  ->  ( A. r  e.  S  (
( T  C_  r  /\  r  C_  ( T 
.(+)  U ) )  -> 
( r  =  T  \/  r  =  ( T  .(+)  U )
) )  ->  (
( T  C_  (
s  .(+)  T )  /\  ( s  .(+)  T ) 
C_  ( T  .(+)  U ) )  ->  (
( s  .(+)  T )  =  T  \/  (
s  .(+)  T )  =  ( T  .(+)  U ) ) ) ) )
5243, 51syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  s  e.  S )  ->  ( A. r  e.  S  ( ( T  C_  r  /\  r  C_  ( T  .(+)  U ) )  ->  ( r  =  T  \/  r  =  ( T  .(+)  U ) ) )  ->  (
( T  C_  (
s  .(+)  T )  /\  ( s  .(+)  T ) 
C_  ( T  .(+)  U ) )  ->  (
( s  .(+)  T )  =  T  \/  (
s  .(+)  T )  =  ( T  .(+)  U ) ) ) ) )
5352adantld 467 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S )  ->  (
( T  C.  ( T  .(+)  U )  /\  A. r  e.  S  ( ( T  C_  r  /\  r  C_  ( T 
.(+)  U ) )  -> 
( r  =  T  \/  r  =  ( T  .(+)  U )
) ) )  -> 
( ( T  C_  ( s  .(+)  T )  /\  ( s  .(+)  T )  C_  ( T  .(+) 
U ) )  -> 
( ( s  .(+)  T )  =  T  \/  ( s  .(+)  T )  =  ( T  .(+)  U ) ) ) ) )
5438, 53sylbid 215 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S )  ->  ( T C ( T  .(+)  U )  ->  ( ( T  C_  ( s  .(+)  T )  /\  ( s 
.(+)  T )  C_  ( T  .(+)  U ) )  ->  ( ( s 
.(+)  T )  =  T  \/  ( s  .(+)  T )  =  ( T 
.(+)  U ) ) ) ) )
55543adant3 1016 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  ( T C ( T  .(+)  U )  ->  ( ( T  C_  ( s  .(+)  T )  /\  ( s 
.(+)  T )  C_  ( T  .(+)  U ) )  ->  ( ( s 
.(+)  T )  =  T  \/  ( s  .(+)  T )  =  ( T 
.(+)  U ) ) ) ) )
5636, 55mpd 15 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( T  C_  (
s  .(+)  T )  /\  ( s  .(+)  T ) 
C_  ( T  .(+)  U ) )  ->  (
( s  .(+)  T )  =  T  \/  (
s  .(+)  T )  =  ( T  .(+)  U ) ) ) )
5721, 35, 56mp2and 679 . . . . 5  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( s  .(+)  T )  =  T  \/  (
s  .(+)  T )  =  ( T  .(+)  U ) ) )
58 ineq1 3698 . . . . . . 7  |-  ( ( s  .(+)  T )  =  T  ->  ( ( s  .(+)  T )  i^i  U )  =  ( T  i^i  U ) )
59 simp3l 1024 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  ( T  i^i  U )  C_  s )
601, 6, 2, 13, 18, 22, 16, 59, 24lcvexchlem2 34233 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( s  .(+)  T )  i^i  U )  =  s )
6160eqeq1d 2469 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( ( s  .(+)  T )  i^i  U )  =  ( T  i^i  U )  <->  s  =  ( T  i^i  U ) ) )
6258, 61syl5ib 219 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( s  .(+)  T )  =  T  ->  s  =  ( T  i^i  U ) ) )
63 ineq1 3698 . . . . . . 7  |-  ( ( s  .(+)  T )  =  ( T  .(+)  U )  ->  ( (
s  .(+)  T )  i^i 
U )  =  ( ( T  .(+)  U )  i^i  U ) )
646lsmub2 16550 . . . . . . . . . 10  |-  ( ( T  e.  (SubGrp `  W )  /\  U  e.  (SubGrp `  W )
)  ->  U  C_  ( T  .(+)  U ) )
6519, 23, 64syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  U  C_  ( T  .(+)  U ) )
66 dfss1 3708 . . . . . . . . 9  |-  ( U 
C_  ( T  .(+)  U )  <->  ( ( T 
.(+)  U )  i^i  U
)  =  U )
6765, 66sylib 196 . . . . . . . 8  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( T  .(+)  U )  i^i  U )  =  U )
6860, 67eqeq12d 2489 . . . . . . 7  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( ( s  .(+)  T )  i^i  U )  =  ( ( T 
.(+)  U )  i^i  U
)  <->  s  =  U ) )
6963, 68syl5ib 219 . . . . . 6  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( s  .(+)  T )  =  ( T  .(+)  U )  ->  s  =  U ) )
7062, 69orim12d 836 . . . . 5  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
( ( s  .(+)  T )  =  T  \/  ( s  .(+)  T )  =  ( T  .(+)  U ) )  ->  (
s  =  ( T  i^i  U )  \/  s  =  U ) ) )
7157, 70mpd 15 . . . 4  |-  ( (
ph  /\  s  e.  S  /\  ( ( T  i^i  U )  C_  s  /\  s  C_  U
) )  ->  (
s  =  ( T  i^i  U )  \/  s  =  U ) )
72713exp 1195 . . 3  |-  ( ph  ->  ( s  e.  S  ->  ( ( ( T  i^i  U )  C_  s  /\  s  C_  U
)  ->  ( s  =  ( T  i^i  U )  \/  s  =  U ) ) ) )
7372ralrimiv 2879 . 2  |-  ( ph  ->  A. s  e.  S  ( ( ( T  i^i  U )  C_  s  /\  s  C_  U
)  ->  ( s  =  ( T  i^i  U )  \/  s  =  U ) ) )
741lssincl 17482 . . . 4  |-  ( ( W  e.  LMod  /\  T  e.  S  /\  U  e.  S )  ->  ( T  i^i  U )  e.  S )
753, 4, 5, 74syl3anc 1228 . . 3  |-  ( ph  ->  ( T  i^i  U
)  e.  S )
761, 2, 3, 75, 5lcvbr3 34221 . 2  |-  ( ph  ->  ( ( T  i^i  U ) C U  <->  ( ( T  i^i  U )  C.  U  /\  A. s  e.  S  ( ( ( T  i^i  U ) 
C_  s  /\  s  C_  U )  ->  (
s  =  ( T  i^i  U )  \/  s  =  U ) ) ) ) )
7712, 73, 76mpbir2and 920 1  |-  ( ph  ->  ( T  i^i  U
) C U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817    i^i cin 3480    C_ wss 3481    C. wpss 3482   class class class wbr 4453   ` cfv 5594  (class class class)co 6295  SubGrpcsubg 16067   LSSumclsm 16527   Abelcabl 16672   LModclmod 17383   LSubSpclss 17449    <oLL clcv 34216
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-0g 14714  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-submnd 15840  df-grp 15929  df-minusg 15930  df-sbg 15931  df-subg 16070  df-cntz 16227  df-lsm 16529  df-cmn 16673  df-abl 16674  df-mgp 17014  df-ur 17026  df-ring 17072  df-lmod 17385  df-lss 17450  df-lcv 34217
This theorem is referenced by:  lcvexch  34237  lsatcvat3  34250
  Copyright terms: Public domain W3C validator