MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmval Structured version   Unicode version

Theorem lcmval 14526
Description: Value of the lcm operator.  ( M lcm  N
) is the least common multiple of  M and  N. If either  M or  N is  0, the result is defined conventionally as  0. Contrast with df-gcd 14443 and gcdval 14444. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Revised by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
Distinct variable groups:    n, M    n, N

Proof of Theorem lcmval
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqeq1 2433 . . . 4  |-  ( x  =  M  ->  (
x  =  0  <->  M  =  0 ) )
21orbi1d 707 . . 3  |-  ( x  =  M  ->  (
( x  =  0  \/  y  =  0 )  <->  ( M  =  0  \/  y  =  0 ) ) )
3 breq1 4429 . . . . . 6  |-  ( x  =  M  ->  (
x  ||  n  <->  M  ||  n
) )
43anbi1d 709 . . . . 5  |-  ( x  =  M  ->  (
( x  ||  n  /\  y  ||  n )  <-> 
( M  ||  n  /\  y  ||  n ) ) )
54rabbidv 3079 . . . 4  |-  ( x  =  M  ->  { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) }  =  { n  e.  NN  |  ( M  ||  n  /\  y  ||  n
) } )
65infeq1d 7999 . . 3  |-  ( x  =  M  -> inf ( { n  e.  NN  | 
( x  ||  n  /\  y  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( M  ||  n  /\  y  ||  n ) } ,  RR ,  <  ) )
72, 6ifbieq2d 3940 . 2  |-  ( x  =  M  ->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  y  ||  n
) } ,  RR ,  <  ) ) )
8 eqeq1 2433 . . . 4  |-  ( y  =  N  ->  (
y  =  0  <->  N  =  0 ) )
98orbi2d 706 . . 3  |-  ( y  =  N  ->  (
( M  =  0  \/  y  =  0 )  <->  ( M  =  0  \/  N  =  0 ) ) )
10 breq1 4429 . . . . . 6  |-  ( y  =  N  ->  (
y  ||  n  <->  N  ||  n
) )
1110anbi2d 708 . . . . 5  |-  ( y  =  N  ->  (
( M  ||  n  /\  y  ||  n )  <-> 
( M  ||  n  /\  N  ||  n ) ) )
1211rabbidv 3079 . . . 4  |-  ( y  =  N  ->  { n  e.  NN  |  ( M 
||  n  /\  y  ||  n ) }  =  { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } )
1312infeq1d 7999 . . 3  |-  ( y  =  N  -> inf ( { n  e.  NN  | 
( M  ||  n  /\  y  ||  n ) } ,  RR ,  <  )  = inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  ) )
149, 13ifbieq2d 3940 . 2  |-  ( y  =  N  ->  if ( ( M  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
15 df-lcm 14522 . 2  |- lcm  =  ( x  e.  ZZ , 
y  e.  ZZ  |->  if ( ( x  =  0  \/  y  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( x 
||  n  /\  y  ||  n ) } ,  RR ,  <  ) ) )
16 c0ex 9636 . . 3  |-  0  e.  _V
17 ltso 9713 . . . 4  |-  <  Or  RR
1817infex 8015 . . 3  |- inf ( { n  e.  NN  | 
( M  ||  n  /\  N  ||  n ) } ,  RR ,  <  )  e.  _V
1916, 18ifex 3983 . 2  |-  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M 
||  n  /\  N  ||  n ) } ,  RR ,  <  ) )  e.  _V
207, 14, 15, 19ovmpt2 6446 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M lcm  N )  =  if ( ( M  =  0  \/  N  =  0 ) ,  0 , inf ( { n  e.  NN  |  ( M  ||  n  /\  N  ||  n
) } ,  RR ,  <  ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 369    /\ wa 370    = wceq 1437    e. wcel 1870   {crab 2786   ifcif 3915   class class class wbr 4426  (class class class)co 6305  infcinf 7961   RRcr 9537   0cc0 9538    < clt 9674   NNcn 10609   ZZcz 10937    || cdvds 14283   lcm clcm 14518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-resscn 9595  ax-1cn 9596  ax-icn 9597  ax-addcl 9598  ax-mulcl 9600  ax-i2m1 9606  ax-pre-lttri 9612  ax-pre-lttrn 9613
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-nel 2628  df-ral 2787  df-rex 2788  df-rmo 2790  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-id 4769  df-po 4775  df-so 4776  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-er 7371  df-en 7578  df-dom 7579  df-sdom 7580  df-sup 7962  df-inf 7963  df-pnf 9676  df-mnf 9677  df-ltxr 9679  df-lcm 14522
This theorem is referenced by:  lcmcom  14528  lcm0val  14529  lcmn0val  14530  lcmass  14550  lcmfpr  14571
  Copyright terms: Public domain W3C validator