Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem9 Structured version   Unicode version

Theorem lcfrlem9 34917
Description: Lemma for lcf1o 34918. (This part has undesirable $d's on  J and  ph that we remove in lcf1o 34918.) TODO: ugly proof; maybe have better subtheorems or abbreviate some  iota_
k expansions with  J `  z? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h  |-  H  =  ( LHyp `  K
)
lcf1o.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcf1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcf1o.v  |-  V  =  ( Base `  U
)
lcf1o.a  |-  .+  =  ( +g  `  U )
lcf1o.t  |-  .x.  =  ( .s `  U )
lcf1o.s  |-  S  =  (Scalar `  U )
lcf1o.r  |-  R  =  ( Base `  S
)
lcf1o.z  |-  .0.  =  ( 0g `  U )
lcf1o.f  |-  F  =  (LFnl `  U )
lcf1o.l  |-  L  =  (LKer `  U )
lcf1o.d  |-  D  =  (LDual `  U )
lcf1o.q  |-  Q  =  ( 0g `  D
)
lcf1o.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcf1o.j  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
lcflo.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
lcfrlem9  |-  ( ph  ->  J : ( V 
\  {  .0.  }
)
-1-1-onto-> ( C  \  { Q } ) )
Distinct variable groups:    x, w,  ._|_    x,  .0. , v    v, V, x    x,  .x.    v, k, w, x,  .+    x, R    f,
k, v, w, x, 
.+    k, J, v, w, x    C, k, v, w, x    f, F    f, L, k, v, w, x    ._|_ , f, k, v    Q, k, v, w, x    R, f, k, v, w    S, k, v, w, x    .x. , f,
k, v, w    U, k, w, x    f, V, k, w    .0. , k,
v, w    ph, k, v, w, x
Allowed substitution hints:    ph( f)    C( f)    D( x, w, v, f, k)    Q( f)    S( f)    U( v, f)    F( x, w, v, k)    H( x, w, v, f, k)    J( f)    K( x, w, v, f, k)    W( x, w, v, f, k)    .0. ( f)

Proof of Theorem lcfrlem9
Dummy variables  y 
g  t  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.v . . . . . 6  |-  V  =  ( Base `  U
)
2 fvex 5698 . . . . . 6  |-  ( Base `  U )  e.  _V
31, 2eqeltri 2511 . . . . 5  |-  V  e. 
_V
43mptex 5945 . . . 4  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  e.  _V
5 lcf1o.j . . . 4  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
64, 5fnmpti 5536 . . 3  |-  J  Fn  ( V  \  {  .0.  } )
76a1i 11 . 2  |-  ( ph  ->  J  Fn  ( V 
\  {  .0.  }
) )
8 fvelrnb 5736 . . . . 5  |-  ( J  Fn  ( V  \  {  .0.  } )  -> 
( g  e.  ran  J  <->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g ) )
97, 8syl 16 . . . 4  |-  ( ph  ->  ( g  e.  ran  J  <->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g ) )
10 lcf1o.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
11 lcf1o.o . . . . . . . . 9  |-  ._|_  =  ( ( ocH `  K
) `  W )
12 lcf1o.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
13 lcf1o.a . . . . . . . . 9  |-  .+  =  ( +g  `  U )
14 lcf1o.t . . . . . . . . 9  |-  .x.  =  ( .s `  U )
15 lcf1o.s . . . . . . . . 9  |-  S  =  (Scalar `  U )
16 lcf1o.r . . . . . . . . 9  |-  R  =  ( Base `  S
)
17 lcf1o.z . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
18 lcf1o.f . . . . . . . . 9  |-  F  =  (LFnl `  U )
19 lcf1o.l . . . . . . . . 9  |-  L  =  (LKer `  U )
20 lcf1o.d . . . . . . . . 9  |-  D  =  (LDual `  U )
21 lcf1o.q . . . . . . . . 9  |-  Q  =  ( 0g `  D
)
22 lcf1o.c . . . . . . . . 9  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
23 lcflo.k . . . . . . . . . 10  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2423adantr 462 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
25 simpr 458 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( V  \  {  .0.  } ) )
2610, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 24, 25lcfrlem8 34916 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) )
27 eqid 2441 . . . . . . . . . . . 12  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )
28 sneq 3884 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  { y }  =  { z } )
2928fveq2d 5692 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (  ._|_  `  { y } )  =  (  ._|_  `  { z } ) )
30 oveq2 6098 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  (
k  .x.  y )  =  ( k  .x.  z ) )
3130oveq2d 6106 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
w  .+  ( k  .x.  y ) )  =  ( w  .+  (
k  .x.  z )
) )
3231eqeq2d 2452 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
v  =  ( w 
.+  ( k  .x.  y ) )  <->  v  =  ( w  .+  ( k 
.x.  z ) ) ) )
3329, 32rexeqbidv 2930 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  ( E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) )  <->  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )
3433riotabidv 6051 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w 
.+  ( k  .x.  y ) ) )  =  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )
3534mpteq2dv 4376 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
3635eqeq2d 2452 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  (
( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) )  <->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) ) )
3736rspcev 3070 . . . . . . . . . . . 12  |-  ( ( z  e.  ( V 
\  {  .0.  }
)  /\  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) )  ->  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) ) )
3825, 27, 37sylancl 657 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) )
3938olcd 393 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  \/  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )
4010, 11, 12, 1, 17, 13, 14, 18, 15, 16, 27, 24, 25dochflcl 34842 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  F
)
4110, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 22, 24, 40lcfl6 34867 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C  <->  ( ( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  \/  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) ) )
4239, 41mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C
)
4310, 11, 12, 1, 17, 13, 14, 19, 15, 16, 27, 24, 25dochsnkr2cl 34841 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) )  \  {  .0.  } ) )
4410, 11, 12, 1, 17, 18, 19, 24, 40, 43dochsnkrlem3 34838 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) ) )  =  ( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
4510, 11, 12, 1, 17, 18, 19, 24, 40, 43dochsnkrlem1 34836 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) ) )  =/= 
V )
4644, 45eqnetrrd 2626 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) )  =/=  V )
4710, 12, 23dvhlmod 34477 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LMod )
4847adantr 462 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  U  e.  LMod )
491, 18, 19, 20, 21, 48, 40lkr0f2 32528 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  <->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =  Q ) )
5049necon3bid 2641 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =/= 
V  <->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =/= 
Q ) )
5146, 50mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =/=  Q
)
52 eldifsn 3997 . . . . . . . . 9  |-  ( ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  ( C  \  { Q } )  <->  ( (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C  /\  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =/=  Q
) )
5342, 51, 52sylanbrc 659 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  ( C  \  { Q } ) )
5426, 53eqeltrd 2515 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  e.  ( C  \  { Q } ) )
55 eleq1 2501 . . . . . . 7  |-  ( ( J `  z )  =  g  ->  (
( J `  z
)  e.  ( C 
\  { Q }
)  <->  g  e.  ( C  \  { Q } ) ) )
5654, 55syl5ibcom 220 . . . . . 6  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( J `  z
)  =  g  -> 
g  e.  ( C 
\  { Q }
) ) )
5756rexlimdva 2839 . . . . 5  |-  ( ph  ->  ( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  ->  g  e.  ( C  \  { Q } ) ) )
58 eldifsn 3997 . . . . . . . 8  |-  ( g  e.  ( C  \  { Q } )  <->  ( g  e.  C  /\  g  =/=  Q ) )
59 simprl 750 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
g  e.  C )
6047adantr 462 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  C )  ->  U  e.  LMod )
6122lcfl1lem 34858 . . . . . . . . . . . . . . . 16  |-  ( g  e.  C  <->  ( g  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  g )
) )  =  ( L `  g ) ) )
6261simplbi 457 . . . . . . . . . . . . . . 15  |-  ( g  e.  C  ->  g  e.  F )
6362adantl 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  C )  ->  g  e.  F )
641, 18, 19, 20, 21, 60, 63lkr0f2 32528 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  C )  ->  (
( L `  g
)  =  V  <->  g  =  Q ) )
6564necon3bid 2641 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  C )  ->  (
( L `  g
)  =/=  V  <->  g  =/=  Q ) )
6665biimprd 223 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  C )  ->  (
g  =/=  Q  -> 
( L `  g
)  =/=  V ) )
6766impr 616 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( L `  g
)  =/=  V )
6867neneqd 2622 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  ->  -.  ( L `  g
)  =  V )
6923adantr 462 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
7062adantr 462 . . . . . . . . . . . . . 14  |-  ( ( g  e.  C  /\  g  =/=  Q )  -> 
g  e.  F )
7170adantl 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
g  e.  F )
7210, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 22, 69, 71lcfl6 34867 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( g  e.  C  <->  ( ( L `  g
)  =  V  \/  E. z  e.  ( V 
\  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) ) )
7372biimpa 481 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C
)  ->  ( ( L `  g )  =  V  \/  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
7473ord 377 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C
)  ->  ( -.  ( L `  g )  =  V  ->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
75743impia 1179 . . . . . . . . 9  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C  /\  -.  ( L `  g )  =  V )  ->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
7659, 68, 75mpd3an23 1311 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  ->  E. z  e.  ( V  \  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
7758, 76sylan2b 472 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  ->  E. z  e.  ( V  \  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
78 eqcom 2443 . . . . . . . . 9  |-  ( ( J `  z )  =  g  <->  g  =  ( J `  z ) )
7923ad2antrr 720 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
80 simpr 458 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( V  \  {  .0.  } ) )
8110, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 79, 80lcfrlem8 34916 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
8281eqeq2d 2452 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( g  =  ( J `  z )  <->  g  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8378, 82syl5bb 257 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( ( J `  z )  =  g  <->  g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8483rexbidva 2730 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  -> 
( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  <->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8577, 84mpbird 232 . . . . . 6  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  ->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g )
8685ex 434 . . . . 5  |-  ( ph  ->  ( g  e.  ( C  \  { Q } )  ->  E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g ) )
8757, 86impbid 191 . . . 4  |-  ( ph  ->  ( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  <->  g  e.  ( C  \  { Q } ) ) )
889, 87bitrd 253 . . 3  |-  ( ph  ->  ( g  e.  ran  J  <-> 
g  e.  ( C 
\  { Q }
) ) )
8988eqrdv 2439 . 2  |-  ( ph  ->  ran  J  =  ( C  \  { Q } ) )
9023ad2antrr 720 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
91 eqid 2441 . . . . 5  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
t } ) v  =  ( w  .+  ( k  .x.  t
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { t } ) v  =  ( w  .+  (
k  .x.  t )
) ) )
92 eqid 2441 . . . . 5  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
u } ) v  =  ( w  .+  ( k  .x.  u
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { u } ) v  =  ( w  .+  (
k  .x.  u )
) ) )
93 simplrl 754 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
t  e.  ( V 
\  {  .0.  }
) )
94 simplrr 755 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  ->  u  e.  ( V  \  {  .0.  } ) )
95 simpr 458 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  t
)  =  ( J `
 u ) )
9610, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 90, 93lcfrlem8 34916 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  t
)  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
t } ) v  =  ( w  .+  ( k  .x.  t
) ) ) ) )
9710, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 90, 94lcfrlem8 34916 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  u
)  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
u } ) v  =  ( w  .+  ( k  .x.  u
) ) ) ) )
9895, 96, 973eqtr3d 2481 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { t } ) v  =  ( w  .+  ( k 
.x.  t ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { u }
) v  =  ( w  .+  ( k 
.x.  u ) ) ) ) )
9910, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 90, 91, 92, 93, 94, 98lcfl7lem 34866 . . . 4  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
t  =  u )
10099ex 434 . . 3  |-  ( (
ph  /\  ( t  e.  ( V  \  {  .0.  } )  /\  u  e.  ( V  \  {  .0.  } ) ) )  ->  ( ( J `
 t )  =  ( J `  u
)  ->  t  =  u ) )
101100ralrimivva 2806 . 2  |-  ( ph  ->  A. t  e.  ( V  \  {  .0.  } ) A. u  e.  ( V  \  {  .0.  } ) ( ( J `  t )  =  ( J `  u )  ->  t  =  u ) )
102 dff1o6 5979 . 2  |-  ( J : ( V  \  {  .0.  } ) -1-1-onto-> ( C 
\  { Q }
)  <->  ( J  Fn  ( V  \  {  .0.  } )  /\  ran  J  =  ( C  \  { Q } )  /\  A. t  e.  ( V 
\  {  .0.  }
) A. u  e.  ( V  \  {  .0.  } ) ( ( J `  t )  =  ( J `  u )  ->  t  =  u ) ) )
1037, 89, 101, 102syl3anbrc 1167 1  |-  ( ph  ->  J : ( V 
\  {  .0.  }
)
-1-1-onto-> ( C  \  { Q } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1364    e. wcel 1761    =/= wne 2604   A.wral 2713   E.wrex 2714   {crab 2717   _Vcvv 2970    \ cdif 3322   {csn 3874    e. cmpt 4347   ran crn 4837    Fn wfn 5410   -1-1-onto->wf1o 5414   ` cfv 5415   iota_crio 6048  (class class class)co 6090   Basecbs 14170   +g cplusg 14234  Scalarcsca 14237   .scvsca 14238   0gc0g 14374   LModclmod 16928  LFnlclfn 32424  LKerclk 32452  LDualcld 32490   HLchlt 32717   LHypclh 33350   DVecHcdvh 34445   ocHcoch 34714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-riotaBAD 32326
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-iin 4171  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-tpos 6744  df-undef 6788  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-n0 10576  df-z 10643  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-0g 14376  df-poset 15112  df-plt 15124  df-lub 15140  df-glb 15141  df-join 15142  df-meet 15143  df-p0 15205  df-p1 15206  df-lat 15212  df-clat 15274  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-subg 15671  df-cntz 15828  df-lsm 16128  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-oppr 16705  df-dvdsr 16723  df-unit 16724  df-invr 16754  df-dvr 16765  df-drng 16814  df-lmod 16930  df-lss 16992  df-lsp 17031  df-lvec 17162  df-lsatoms 32343  df-lshyp 32344  df-lfl 32425  df-lkr 32453  df-ldual 32491  df-oposet 32543  df-ol 32545  df-oml 32546  df-covers 32633  df-ats 32634  df-atl 32665  df-cvlat 32689  df-hlat 32718  df-llines 32864  df-lplanes 32865  df-lvols 32866  df-lines 32867  df-psubsp 32869  df-pmap 32870  df-padd 33162  df-lhyp 33354  df-laut 33355  df-ldil 33470  df-ltrn 33471  df-trl 33525  df-tgrp 34109  df-tendo 34121  df-edring 34123  df-dveca 34369  df-disoa 34396  df-dvech 34446  df-dib 34506  df-dic 34540  df-dih 34596  df-doch 34715  df-djh 34762
This theorem is referenced by:  lcf1o  34918
  Copyright terms: Public domain W3C validator