Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem9 Structured version   Unicode version

Theorem lcfrlem9 37399
Description: Lemma for lcf1o 37400. (This part has undesirable $d's on  J and  ph that we remove in lcf1o 37400.) TODO: ugly proof; maybe have better subtheorems or abbreviate some  iota_
k expansions with  J `  z? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
Hypotheses
Ref Expression
lcf1o.h  |-  H  =  ( LHyp `  K
)
lcf1o.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcf1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcf1o.v  |-  V  =  ( Base `  U
)
lcf1o.a  |-  .+  =  ( +g  `  U )
lcf1o.t  |-  .x.  =  ( .s `  U )
lcf1o.s  |-  S  =  (Scalar `  U )
lcf1o.r  |-  R  =  ( Base `  S
)
lcf1o.z  |-  .0.  =  ( 0g `  U )
lcf1o.f  |-  F  =  (LFnl `  U )
lcf1o.l  |-  L  =  (LKer `  U )
lcf1o.d  |-  D  =  (LDual `  U )
lcf1o.q  |-  Q  =  ( 0g `  D
)
lcf1o.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcf1o.j  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
lcflo.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
Assertion
Ref Expression
lcfrlem9  |-  ( ph  ->  J : ( V 
\  {  .0.  }
)
-1-1-onto-> ( C  \  { Q } ) )
Distinct variable groups:    x, w,  ._|_    x,  .0. , v    v, V, x    x,  .x.    v, k, w, x,  .+    x, R    f,
k, v, w, x, 
.+    k, J, v, w, x    C, k, v, w, x    f, F    f, L, k, v, w, x    ._|_ , f, k, v    Q, k, v, w, x    R, f, k, v, w    S, k, v, w, x    .x. , f,
k, v, w    U, k, w, x    f, V, k, w    .0. , k,
v, w    ph, k, v, w, x
Allowed substitution hints:    ph( f)    C( f)    D( x, w, v, f, k)    Q( f)    S( f)    U( v, f)    F( x, w, v, k)    H( x, w, v, f, k)    J( f)    K( x, w, v, f, k)    W( x, w, v, f, k)    .0. ( f)

Proof of Theorem lcfrlem9
Dummy variables  y 
g  t  u  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lcf1o.v . . . . . 6  |-  V  =  ( Base `  U
)
2 fvex 5882 . . . . . 6  |-  ( Base `  U )  e.  _V
31, 2eqeltri 2541 . . . . 5  |-  V  e. 
_V
43mptex 6144 . . . 4  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
x } ) v  =  ( w  .+  ( k  .x.  x
) ) ) )  e.  _V
5 lcf1o.j . . . 4  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
64, 5fnmpti 5715 . . 3  |-  J  Fn  ( V  \  {  .0.  } )
76a1i 11 . 2  |-  ( ph  ->  J  Fn  ( V 
\  {  .0.  }
) )
8 fvelrnb 5920 . . . . 5  |-  ( J  Fn  ( V  \  {  .0.  } )  -> 
( g  e.  ran  J  <->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g ) )
97, 8syl 16 . . . 4  |-  ( ph  ->  ( g  e.  ran  J  <->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g ) )
10 lcf1o.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
11 lcf1o.o . . . . . . . . 9  |-  ._|_  =  ( ( ocH `  K
) `  W )
12 lcf1o.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
13 lcf1o.a . . . . . . . . 9  |-  .+  =  ( +g  `  U )
14 lcf1o.t . . . . . . . . 9  |-  .x.  =  ( .s `  U )
15 lcf1o.s . . . . . . . . 9  |-  S  =  (Scalar `  U )
16 lcf1o.r . . . . . . . . 9  |-  R  =  ( Base `  S
)
17 lcf1o.z . . . . . . . . 9  |-  .0.  =  ( 0g `  U )
18 lcf1o.f . . . . . . . . 9  |-  F  =  (LFnl `  U )
19 lcf1o.l . . . . . . . . 9  |-  L  =  (LKer `  U )
20 lcf1o.d . . . . . . . . 9  |-  D  =  (LDual `  U )
21 lcf1o.q . . . . . . . . 9  |-  Q  =  ( 0g `  D
)
22 lcf1o.c . . . . . . . . 9  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
23 lcflo.k . . . . . . . . . 10  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
2423adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
25 simpr 461 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( V  \  {  .0.  } ) )
2610, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 24, 25lcfrlem8 37398 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) )
27 eqid 2457 . . . . . . . . . . . 12  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )
28 sneq 4042 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  { y }  =  { z } )
2928fveq2d 5876 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (  ._|_  `  { y } )  =  (  ._|_  `  { z } ) )
30 oveq2 6304 . . . . . . . . . . . . . . . . . . 19  |-  ( y  =  z  ->  (
k  .x.  y )  =  ( k  .x.  z ) )
3130oveq2d 6312 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  z  ->  (
w  .+  ( k  .x.  y ) )  =  ( w  .+  (
k  .x.  z )
) )
3231eqeq2d 2471 . . . . . . . . . . . . . . . . 17  |-  ( y  =  z  ->  (
v  =  ( w 
.+  ( k  .x.  y ) )  <->  v  =  ( w  .+  ( k 
.x.  z ) ) ) )
3329, 32rexeqbidv 3069 . . . . . . . . . . . . . . . 16  |-  ( y  =  z  ->  ( E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) )  <->  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )
3433riotabidv 6260 . . . . . . . . . . . . . . 15  |-  ( y  =  z  ->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w 
.+  ( k  .x.  y ) ) )  =  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )
3534mpteq2dv 4544 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
3635eqeq2d 2471 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  (
( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) )  <->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) ) )
3736rspcev 3210 . . . . . . . . . . . 12  |-  ( ( z  e.  ( V 
\  {  .0.  }
)  /\  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) ) )  ->  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  ( k 
.x.  y ) ) ) ) )
3825, 27, 37sylancl 662 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) )
3938olcd 393 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  \/  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) )
4010, 11, 12, 1, 17, 13, 14, 18, 15, 16, 27, 24, 25dochflcl 37324 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  F
)
4110, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 22, 24, 40lcfl6 37349 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C  <->  ( ( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  \/  E. y  e.  ( V  \  {  .0.  } ) ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { y } ) v  =  ( w  .+  (
k  .x.  y )
) ) ) ) ) )
4239, 41mpbird 232 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C
)
4310, 11, 12, 1, 17, 13, 14, 19, 15, 16, 27, 24, 25dochsnkr2cl 37323 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) )  \  {  .0.  } ) )
4410, 11, 12, 1, 17, 18, 19, 24, 40, 43dochsnkrlem3 37320 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) ) )  =  ( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
4510, 11, 12, 1, 17, 18, 19, 24, 40, 43dochsnkrlem1 37318 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (  ._|_  `  (  ._|_  `  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) ) ) )  =/= 
V )
4644, 45eqnetrrd 2751 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( L `  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
z } ) v  =  ( w  .+  ( k  .x.  z
) ) ) ) )  =/=  V )
4710, 12, 23dvhlmod 36959 . . . . . . . . . . . . 13  |-  ( ph  ->  U  e.  LMod )
4847adantr 465 . . . . . . . . . . . 12  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  U  e.  LMod )
491, 18, 19, 20, 21, 48, 40lkr0f2 35008 . . . . . . . . . . 11  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =  V  <->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =  Q ) )
5049necon3bid 2715 . . . . . . . . . 10  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( L `  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )  =/= 
V  <->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  (
k  .x.  z )
) ) )  =/= 
Q ) )
5146, 50mpbid 210 . . . . . . . . 9  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =/=  Q
)
52 eldifsn 4157 . . . . . . . . 9  |-  ( ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  ( C  \  { Q } )  <->  ( (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  C  /\  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  =/=  Q
) )
5342, 51, 52sylanbrc 664 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) )  e.  ( C  \  { Q } ) )
5426, 53eqeltrd 2545 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  e.  ( C  \  { Q } ) )
55 eleq1 2529 . . . . . . 7  |-  ( ( J `  z )  =  g  ->  (
( J `  z
)  e.  ( C 
\  { Q }
)  <->  g  e.  ( C  \  { Q } ) ) )
5654, 55syl5ibcom 220 . . . . . 6  |-  ( (
ph  /\  z  e.  ( V  \  {  .0.  } ) )  ->  (
( J `  z
)  =  g  -> 
g  e.  ( C 
\  { Q }
) ) )
5756rexlimdva 2949 . . . . 5  |-  ( ph  ->  ( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  ->  g  e.  ( C  \  { Q } ) ) )
58 eldifsn 4157 . . . . . . . 8  |-  ( g  e.  ( C  \  { Q } )  <->  ( g  e.  C  /\  g  =/=  Q ) )
59 simprl 756 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
g  e.  C )
6047adantr 465 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  C )  ->  U  e.  LMod )
6122lcfl1lem 37340 . . . . . . . . . . . . . . . 16  |-  ( g  e.  C  <->  ( g  e.  F  /\  (  ._|_  `  (  ._|_  `  ( L `  g )
) )  =  ( L `  g ) ) )
6261simplbi 460 . . . . . . . . . . . . . . 15  |-  ( g  e.  C  ->  g  e.  F )
6362adantl 466 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  C )  ->  g  e.  F )
641, 18, 19, 20, 21, 60, 63lkr0f2 35008 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  C )  ->  (
( L `  g
)  =  V  <->  g  =  Q ) )
6564necon3bid 2715 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  C )  ->  (
( L `  g
)  =/=  V  <->  g  =/=  Q ) )
6665biimprd 223 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  C )  ->  (
g  =/=  Q  -> 
( L `  g
)  =/=  V ) )
6766impr 619 . . . . . . . . . 10  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( L `  g
)  =/=  V )
6867neneqd 2659 . . . . . . . . 9  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  ->  -.  ( L `  g
)  =  V )
6923adantr 465 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
7062adantr 465 . . . . . . . . . . . . . 14  |-  ( ( g  e.  C  /\  g  =/=  Q )  -> 
g  e.  F )
7170adantl 466 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
g  e.  F )
7210, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 22, 69, 71lcfl6 37349 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  -> 
( g  e.  C  <->  ( ( L `  g
)  =  V  \/  E. z  e.  ( V 
\  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) ) )
7372biimpa 484 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C
)  ->  ( ( L `  g )  =  V  \/  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
7473ord 377 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C
)  ->  ( -.  ( L `  g )  =  V  ->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
75743impia 1193 . . . . . . . . 9  |-  ( ( ( ph  /\  (
g  e.  C  /\  g  =/=  Q ) )  /\  g  e.  C  /\  -.  ( L `  g )  =  V )  ->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
7659, 68, 75mpd3an23 1326 . . . . . . . 8  |-  ( (
ph  /\  ( g  e.  C  /\  g  =/=  Q ) )  ->  E. z  e.  ( V  \  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
7758, 76sylan2b 475 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  ->  E. z  e.  ( V  \  {  .0.  }
) g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
78 eqcom 2466 . . . . . . . . 9  |-  ( ( J `  z )  =  g  <->  g  =  ( J `  z ) )
7923ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
80 simpr 461 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  z  e.  ( V  \  {  .0.  } ) )
8110, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 79, 80lcfrlem8 37398 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( J `  z )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) )
8281eqeq2d 2471 . . . . . . . . 9  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( g  =  ( J `  z )  <->  g  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8378, 82syl5bb 257 . . . . . . . 8  |-  ( ( ( ph  /\  g  e.  ( C  \  { Q } ) )  /\  z  e.  ( V  \  {  .0.  } ) )  ->  ( ( J `  z )  =  g  <->  g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8483rexbidva 2965 . . . . . . 7  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  -> 
( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  <->  E. z  e.  ( V  \  {  .0.  } ) g  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { z } ) v  =  ( w  .+  ( k 
.x.  z ) ) ) ) ) )
8577, 84mpbird 232 . . . . . 6  |-  ( (
ph  /\  g  e.  ( C  \  { Q } ) )  ->  E. z  e.  ( V  \  {  .0.  }
) ( J `  z )  =  g )
8685ex 434 . . . . 5  |-  ( ph  ->  ( g  e.  ( C  \  { Q } )  ->  E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g ) )
8757, 86impbid 191 . . . 4  |-  ( ph  ->  ( E. z  e.  ( V  \  {  .0.  } ) ( J `
 z )  =  g  <->  g  e.  ( C  \  { Q } ) ) )
889, 87bitrd 253 . . 3  |-  ( ph  ->  ( g  e.  ran  J  <-> 
g  e.  ( C 
\  { Q }
) ) )
8988eqrdv 2454 . 2  |-  ( ph  ->  ran  J  =  ( C  \  { Q } ) )
9023ad2antrr 725 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( K  e.  HL  /\  W  e.  H ) )
91 eqid 2457 . . . . 5  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
t } ) v  =  ( w  .+  ( k  .x.  t
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { t } ) v  =  ( w  .+  (
k  .x.  t )
) ) )
92 eqid 2457 . . . . 5  |-  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
u } ) v  =  ( w  .+  ( k  .x.  u
) ) ) )  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { u } ) v  =  ( w  .+  (
k  .x.  u )
) ) )
93 simplrl 761 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
t  e.  ( V 
\  {  .0.  }
) )
94 simplrr 762 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  ->  u  e.  ( V  \  {  .0.  } ) )
95 simpr 461 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  t
)  =  ( J `
 u ) )
9610, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 90, 93lcfrlem8 37398 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  t
)  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
t } ) v  =  ( w  .+  ( k  .x.  t
) ) ) ) )
9710, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 5, 90, 94lcfrlem8 37398 . . . . . 6  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( J `  u
)  =  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  {
u } ) v  =  ( w  .+  ( k  .x.  u
) ) ) ) )
9895, 96, 973eqtr3d 2506 . . . . 5  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { t } ) v  =  ( w  .+  ( k 
.x.  t ) ) ) )  =  ( v  e.  V  |->  (
iota_ k  e.  R  E. w  e.  (  ._|_  `  { u }
) v  =  ( w  .+  ( k 
.x.  u ) ) ) ) )
9910, 11, 12, 1, 13, 14, 15, 16, 17, 18, 19, 90, 91, 92, 93, 94, 98lcfl7lem 37348 . . . 4  |-  ( ( ( ph  /\  (
t  e.  ( V 
\  {  .0.  }
)  /\  u  e.  ( V  \  {  .0.  } ) ) )  /\  ( J `  t )  =  ( J `  u ) )  -> 
t  =  u )
10099ex 434 . . 3  |-  ( (
ph  /\  ( t  e.  ( V  \  {  .0.  } )  /\  u  e.  ( V  \  {  .0.  } ) ) )  ->  ( ( J `
 t )  =  ( J `  u
)  ->  t  =  u ) )
101100ralrimivva 2878 . 2  |-  ( ph  ->  A. t  e.  ( V  \  {  .0.  } ) A. u  e.  ( V  \  {  .0.  } ) ( ( J `  t )  =  ( J `  u )  ->  t  =  u ) )
102 dff1o6 6182 . 2  |-  ( J : ( V  \  {  .0.  } ) -1-1-onto-> ( C 
\  { Q }
)  <->  ( J  Fn  ( V  \  {  .0.  } )  /\  ran  J  =  ( C  \  { Q } )  /\  A. t  e.  ( V 
\  {  .0.  }
) A. u  e.  ( V  \  {  .0.  } ) ( ( J `  t )  =  ( J `  u )  ->  t  =  u ) ) )
1037, 89, 101, 102syl3anbrc 1180 1  |-  ( ph  ->  J : ( V 
\  {  .0.  }
)
-1-1-onto-> ( C  \  { Q } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   A.wral 2807   E.wrex 2808   {crab 2811   _Vcvv 3109    \ cdif 3468   {csn 4032    |-> cmpt 4515   ran crn 5009    Fn wfn 5589   -1-1-onto->wf1o 5593   ` cfv 5594   iota_crio 6257  (class class class)co 6296   Basecbs 14644   +g cplusg 14712  Scalarcsca 14715   .scvsca 14716   0gc0g 14857   LModclmod 17639  LFnlclfn 34904  LKerclk 34932  LDualcld 34970   HLchlt 35197   LHypclh 35830   DVecHcdvh 36927   ocHcoch 37196
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-riotaBAD 34806
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-undef 7020  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-sca 14728  df-vsca 14729  df-0g 14859  df-preset 15684  df-poset 15702  df-plt 15715  df-lub 15731  df-glb 15732  df-join 15733  df-meet 15734  df-p0 15796  df-p1 15797  df-lat 15803  df-clat 15865  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-submnd 16094  df-grp 16184  df-minusg 16185  df-sbg 16186  df-subg 16325  df-cntz 16482  df-lsm 16783  df-cmn 16927  df-abl 16928  df-mgp 17269  df-ur 17281  df-ring 17327  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-invr 17448  df-dvr 17459  df-drng 17525  df-lmod 17641  df-lss 17706  df-lsp 17745  df-lvec 17876  df-lsatoms 34823  df-lshyp 34824  df-lfl 34905  df-lkr 34933  df-ldual 34971  df-oposet 35023  df-ol 35025  df-oml 35026  df-covers 35113  df-ats 35114  df-atl 35145  df-cvlat 35169  df-hlat 35198  df-llines 35344  df-lplanes 35345  df-lvols 35346  df-lines 35347  df-psubsp 35349  df-pmap 35350  df-padd 35642  df-lhyp 35834  df-laut 35835  df-ldil 35950  df-ltrn 35951  df-trl 36006  df-tgrp 36591  df-tendo 36603  df-edring 36605  df-dveca 36851  df-disoa 36878  df-dvech 36928  df-dib 36988  df-dic 37022  df-dih 37078  df-doch 37197  df-djh 37244
This theorem is referenced by:  lcf1o  37400
  Copyright terms: Public domain W3C validator