Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem6 Structured version   Unicode version

Theorem lcfrlem6 37726
Description: Lemma for lcfr 37764. Closure of vector sum with colinear vectors. TODO: Move down  N definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem6.h  |-  H  =  ( LHyp `  K
)
lcfrlem6.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfrlem6.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfrlem6.p  |-  .+  =  ( +g  `  U )
lcfrlem6.n  |-  N  =  ( LSpan `  U )
lcfrlem6.l  |-  L  =  (LKer `  U )
lcfrlem6.d  |-  D  =  (LDual `  U )
lcfrlem6.q  |-  Q  =  ( LSubSp `  D )
lcfrlem6.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfrlem6.g  |-  ( ph  ->  G  e.  Q )
lcfrlem6.e  |-  E  = 
U_ g  e.  G  (  ._|_  `  ( L `  g ) )
lcfrlem6.x  |-  ( ph  ->  X  e.  E )
lcfrlem6.y  |-  ( ph  ->  Y  e.  E )
lcfrlem6.en  |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y } ) )
Assertion
Ref Expression
lcfrlem6  |-  ( ph  ->  ( X  .+  Y
)  e.  E )
Distinct variable groups:    .+ , g    U, g    g, X    g, Y    ph, g
Allowed substitution hints:    D( g)    Q( g)    E( g)    G( g)    H( g)    K( g)    L( g)    N( g)    ._|_ ( g)    W( g)

Proof of Theorem lcfrlem6
StepHypRef Expression
1 lcfrlem6.x . . . . . 6  |-  ( ph  ->  X  e.  E )
2 lcfrlem6.e . . . . . 6  |-  E  = 
U_ g  e.  G  (  ._|_  `  ( L `  g ) )
31, 2syl6eleq 2494 . . . . 5  |-  ( ph  ->  X  e.  U_ g  e.  G  (  ._|_  `  ( L `  g
) ) )
4 eliun 4265 . . . . 5  |-  ( X  e.  U_ g  e.  G  (  ._|_  `  ( L `  g )
)  <->  E. g  e.  G  X  e.  (  ._|_  `  ( L `  g
) ) )
53, 4sylib 196 . . . 4  |-  ( ph  ->  E. g  e.  G  X  e.  (  ._|_  `  ( L `  g
) ) )
6 lcfrlem6.h . . . . . . . . . 10  |-  H  =  ( LHyp `  K
)
7 lcfrlem6.u . . . . . . . . . 10  |-  U  =  ( ( DVecH `  K
) `  W )
8 lcfrlem6.k . . . . . . . . . 10  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
96, 7, 8dvhlmod 37289 . . . . . . . . 9  |-  ( ph  ->  U  e.  LMod )
109adantr 463 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G )  ->  U  e.  LMod )
1110adantr 463 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  U  e.  LMod )
128adantr 463 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  ( K  e.  HL  /\  W  e.  H ) )
13 eqid 2396 . . . . . . . . . 10  |-  ( Base `  U )  =  (
Base `  U )
14 eqid 2396 . . . . . . . . . 10  |-  (LFnl `  U )  =  (LFnl `  U )
15 lcfrlem6.l . . . . . . . . . 10  |-  L  =  (LKer `  U )
16 lcfrlem6.g . . . . . . . . . . . 12  |-  ( ph  ->  G  e.  Q )
17 eqid 2396 . . . . . . . . . . . . 13  |-  ( Base `  D )  =  (
Base `  D )
18 lcfrlem6.q . . . . . . . . . . . . 13  |-  Q  =  ( LSubSp `  D )
1917, 18lssel 17720 . . . . . . . . . . . 12  |-  ( ( G  e.  Q  /\  g  e.  G )  ->  g  e.  ( Base `  D ) )
2016, 19sylan 469 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  G )  ->  g  e.  ( Base `  D
) )
21 lcfrlem6.d . . . . . . . . . . . . 13  |-  D  =  (LDual `  U )
2214, 21, 17, 9ldualvbase 35303 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  D
)  =  (LFnl `  U ) )
2322adantr 463 . . . . . . . . . . 11  |-  ( (
ph  /\  g  e.  G )  ->  ( Base `  D )  =  (LFnl `  U )
)
2420, 23eleqtrd 2486 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  G )  ->  g  e.  (LFnl `  U )
)
2513, 14, 15, 10, 24lkrssv 35273 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  ( L `  g )  C_  ( Base `  U
) )
26 eqid 2396 . . . . . . . . . 10  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
27 lcfrlem6.o . . . . . . . . . 10  |-  ._|_  =  ( ( ocH `  K
) `  W )
286, 7, 13, 26, 27dochlss 37533 . . . . . . . . 9  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  g )  C_  ( Base `  U ) )  ->  (  ._|_  `  ( L `  g )
)  e.  ( LSubSp `  U ) )
2912, 25, 28syl2anc 659 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G )  ->  (  ._|_  `  ( L `  g ) )  e.  ( LSubSp `  U )
)
3029adantr 463 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  (  ._|_  `  ( L `  g ) )  e.  ( LSubSp `  U )
)
31 simpr 459 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  X  e.  (  ._|_  `  ( L `  g )
) )
32 lcfrlem6.en . . . . . . . . . . . . 13  |-  ( ph  ->  ( N `  { X } )  =  ( N `  { Y } ) )
3332adantr 463 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  G )  ->  ( N `  { X } )  =  ( N `  { Y } ) )
3433adantr 463 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  G )  /\  ( N `  { X } )  C_  (  ._|_  `  ( L `  g ) ) )  ->  ( N `  { X } )  =  ( N `  { Y } ) )
35 simpr 459 . . . . . . . . . . 11  |-  ( ( ( ph  /\  g  e.  G )  /\  ( N `  { X } )  C_  (  ._|_  `  ( L `  g ) ) )  ->  ( N `  { X } )  C_  (  ._|_  `  ( L `  g ) ) )
3634, 35eqsstr3d 3469 . . . . . . . . . 10  |-  ( ( ( ph  /\  g  e.  G )  /\  ( N `  { X } )  C_  (  ._|_  `  ( L `  g ) ) )  ->  ( N `  { Y } )  C_  (  ._|_  `  ( L `  g ) ) )
3736ex 432 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  (
( N `  { X } )  C_  (  ._|_  `  ( L `  g ) )  -> 
( N `  { Y } )  C_  (  ._|_  `  ( L `  g ) ) ) )
38 lcfrlem6.n . . . . . . . . . 10  |-  N  =  ( LSpan `  U )
396, 27, 7, 13, 15, 21, 18, 2, 8, 16, 1lcfrlem4 37724 . . . . . . . . . . 11  |-  ( ph  ->  X  e.  ( Base `  U ) )
4039adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  G )  ->  X  e.  ( Base `  U
) )
4113, 26, 38, 10, 29, 40lspsnel5 17777 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  ( X  e.  (  ._|_  `  ( L `  g
) )  <->  ( N `  { X } ) 
C_  (  ._|_  `  ( L `  g )
) ) )
42 lcfrlem6.y . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  E )
436, 27, 7, 13, 15, 21, 18, 2, 8, 16, 42lcfrlem4 37724 . . . . . . . . . . 11  |-  ( ph  ->  Y  e.  ( Base `  U ) )
4443adantr 463 . . . . . . . . . 10  |-  ( (
ph  /\  g  e.  G )  ->  Y  e.  ( Base `  U
) )
4513, 26, 38, 10, 29, 44lspsnel5 17777 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G )  ->  ( Y  e.  (  ._|_  `  ( L `  g
) )  <->  ( N `  { Y } ) 
C_  (  ._|_  `  ( L `  g )
) ) )
4637, 41, 453imtr4d 268 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G )  ->  ( X  e.  (  ._|_  `  ( L `  g
) )  ->  Y  e.  (  ._|_  `  ( L `  g )
) ) )
4746imp 427 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  Y  e.  (  ._|_  `  ( L `  g )
) )
48 lcfrlem6.p . . . . . . . 8  |-  .+  =  ( +g  `  U )
4948, 26lssvacl 17736 . . . . . . 7  |-  ( ( ( U  e.  LMod  /\  (  ._|_  `  ( L `
 g ) )  e.  ( LSubSp `  U
) )  /\  ( X  e.  (  ._|_  `  ( L `  g
) )  /\  Y  e.  (  ._|_  `  ( L `  g )
) ) )  -> 
( X  .+  Y
)  e.  (  ._|_  `  ( L `  g
) ) )
5011, 30, 31, 47, 49syl22anc 1227 . . . . . 6  |-  ( ( ( ph  /\  g  e.  G )  /\  X  e.  (  ._|_  `  ( L `  g )
) )  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `
 g ) ) )
5150ex 432 . . . . 5  |-  ( (
ph  /\  g  e.  G )  ->  ( X  e.  (  ._|_  `  ( L `  g
) )  ->  ( X  .+  Y )  e.  (  ._|_  `  ( L `
 g ) ) ) )
5251reximdva 2871 . . . 4  |-  ( ph  ->  ( E. g  e.  G  X  e.  ( 
._|_  `  ( L `  g ) )  ->  E. g  e.  G  ( X  .+  Y )  e.  (  ._|_  `  ( L `  g )
) ) )
535, 52mpd 15 . . 3  |-  ( ph  ->  E. g  e.  G  ( X  .+  Y )  e.  (  ._|_  `  ( L `  g )
) )
54 eliun 4265 . . 3  |-  ( ( X  .+  Y )  e.  U_ g  e.  G  (  ._|_  `  ( L `  g )
)  <->  E. g  e.  G  ( X  .+  Y )  e.  (  ._|_  `  ( L `  g )
) )
5553, 54sylibr 212 . 2  |-  ( ph  ->  ( X  .+  Y
)  e.  U_ g  e.  G  (  ._|_  `  ( L `  g
) ) )
5655, 2syl6eleqr 2495 1  |-  ( ph  ->  ( X  .+  Y
)  e.  E )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1399    e. wcel 1836   E.wrex 2747    C_ wss 3406   {csn 3961   U_ciun 4260   ` cfv 5513  (class class class)co 6218   Basecbs 14657   +g cplusg 14725   LModclmod 17648   LSubSpclss 17714   LSpanclspn 17753  LFnlclfn 35234  LKerclk 35262  LDualcld 35300   HLchlt 35527   LHypclh 36160   DVecHcdvh 37257   ocHcoch 37526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2020  ax-ext 2374  ax-rep 4495  ax-sep 4505  ax-nul 4513  ax-pow 4560  ax-pr 4618  ax-un 6513  ax-cnex 9481  ax-resscn 9482  ax-1cn 9483  ax-icn 9484  ax-addcl 9485  ax-addrcl 9486  ax-mulcl 9487  ax-mulrcl 9488  ax-mulcom 9489  ax-addass 9490  ax-mulass 9491  ax-distr 9492  ax-i2m1 9493  ax-1ne0 9494  ax-1rid 9495  ax-rnegex 9496  ax-rrecex 9497  ax-cnre 9498  ax-pre-lttri 9499  ax-pre-lttrn 9500  ax-pre-ltadd 9501  ax-pre-mulgt0 9502  ax-riotaBAD 35136
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-fal 1405  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2236  df-mo 2237  df-clab 2382  df-cleq 2388  df-clel 2391  df-nfc 2546  df-ne 2593  df-nel 2594  df-ral 2751  df-rex 2752  df-reu 2753  df-rmo 2754  df-rab 2755  df-v 3053  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3729  df-if 3875  df-pw 3946  df-sn 3962  df-pr 3964  df-tp 3966  df-op 3968  df-uni 4181  df-int 4217  df-iun 4262  df-iin 4263  df-br 4385  df-opab 4443  df-mpt 4444  df-tr 4478  df-eprel 4722  df-id 4726  df-po 4731  df-so 4732  df-fr 4769  df-we 4771  df-ord 4812  df-on 4813  df-lim 4814  df-suc 4815  df-xp 4936  df-rel 4937  df-cnv 4938  df-co 4939  df-dm 4940  df-rn 4941  df-res 4942  df-ima 4943  df-iota 5477  df-fun 5515  df-fn 5516  df-f 5517  df-f1 5518  df-fo 5519  df-f1o 5520  df-fv 5521  df-riota 6180  df-ov 6221  df-oprab 6222  df-mpt2 6223  df-of 6461  df-om 6622  df-1st 6721  df-2nd 6722  df-tpos 6895  df-undef 6942  df-recs 6982  df-rdg 7016  df-1o 7070  df-oadd 7074  df-er 7251  df-map 7362  df-en 7458  df-dom 7459  df-sdom 7460  df-fin 7461  df-pnf 9563  df-mnf 9564  df-xr 9565  df-ltxr 9566  df-le 9567  df-sub 9742  df-neg 9743  df-nn 10475  df-2 10533  df-3 10534  df-4 10535  df-5 10536  df-6 10537  df-n0 10735  df-z 10804  df-uz 11024  df-fz 11616  df-struct 14659  df-ndx 14660  df-slot 14661  df-base 14662  df-sets 14663  df-ress 14664  df-plusg 14738  df-mulr 14739  df-sca 14741  df-vsca 14742  df-0g 14872  df-preset 15697  df-poset 15715  df-plt 15728  df-lub 15744  df-glb 15745  df-join 15746  df-meet 15747  df-p0 15809  df-p1 15810  df-lat 15816  df-clat 15878  df-mgm 16012  df-sgrp 16051  df-mnd 16061  df-submnd 16107  df-grp 16197  df-minusg 16198  df-sbg 16199  df-subg 16338  df-cntz 16495  df-lsm 16796  df-cmn 16940  df-abl 16941  df-mgp 17278  df-ur 17290  df-ring 17336  df-oppr 17408  df-dvdsr 17426  df-unit 17427  df-invr 17457  df-dvr 17468  df-drng 17534  df-lmod 17650  df-lss 17715  df-lsp 17754  df-lvec 17885  df-lfl 35235  df-lkr 35263  df-ldual 35301  df-oposet 35353  df-ol 35355  df-oml 35356  df-covers 35443  df-ats 35444  df-atl 35475  df-cvlat 35499  df-hlat 35528  df-llines 35674  df-lplanes 35675  df-lvols 35676  df-lines 35677  df-psubsp 35679  df-pmap 35680  df-padd 35972  df-lhyp 36164  df-laut 36165  df-ldil 36280  df-ltrn 36281  df-trl 36336  df-tendo 36933  df-edring 36935  df-disoa 37208  df-dvech 37258  df-dib 37318  df-dic 37352  df-dih 37408  df-doch 37527
This theorem is referenced by:  lcfrlem41  37762
  Copyright terms: Public domain W3C validator