Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem5 Structured version   Unicode version

Theorem lcfrlem5 37374
Description: Lemma for lcfr 37413. The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace  Q is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015.)
Hypotheses
Ref Expression
lcfrlem5.h  |-  H  =  ( LHyp `  K
)
lcfrlem5.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcfrlem5.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcfrlem5.v  |-  V  =  ( Base `  U
)
lcfrlem5.f  |-  F  =  (LFnl `  U )
lcfrlem5.l  |-  L  =  (LKer `  U )
lcfrlem5.d  |-  D  =  (LDual `  U )
lcfrlem5.s  |-  S  =  ( LSubSp `  D )
lcfrlem5.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfrlem5.r  |-  ( ph  ->  R  e.  S )
lcfrlem5.q  |-  Q  = 
U_ f  e.  R  (  ._|_  `  ( L `  f ) )
lcfrlem5.x  |-  ( ph  ->  X  e.  Q )
lcfrlem5.c  |-  C  =  (Scalar `  U )
lcfrlem5.b  |-  B  =  ( Base `  C
)
lcfrlem5.t  |-  .x.  =  ( .s `  U )
lcfrlem5.a  |-  ( ph  ->  A  e.  B )
Assertion
Ref Expression
lcfrlem5  |-  ( ph  ->  ( A  .x.  X
)  e.  Q )
Distinct variable groups:    A, f    .x. , f    f, X    ph, f
Allowed substitution hints:    B( f)    C( f)    D( f)    Q( f)    R( f)    S( f)    U( f)    F( f)    H( f)    K( f)    L( f)    ._|_ ( f)    V( f)    W( f)

Proof of Theorem lcfrlem5
StepHypRef Expression
1 lcfrlem5.x . . . . . 6  |-  ( ph  ->  X  e.  Q )
2 lcfrlem5.q . . . . . 6  |-  Q  = 
U_ f  e.  R  (  ._|_  `  ( L `  f ) )
31, 2syl6eleq 2555 . . . . 5  |-  ( ph  ->  X  e.  U_ f  e.  R  (  ._|_  `  ( L `  f
) ) )
4 eliun 4337 . . . . 5  |-  ( X  e.  U_ f  e.  R  (  ._|_  `  ( L `  f )
)  <->  E. f  e.  R  X  e.  (  ._|_  `  ( L `  f
) ) )
53, 4sylib 196 . . . 4  |-  ( ph  ->  E. f  e.  R  X  e.  (  ._|_  `  ( L `  f
) ) )
6 lcfrlem5.h . . . . . . . . 9  |-  H  =  ( LHyp `  K
)
7 lcfrlem5.u . . . . . . . . 9  |-  U  =  ( ( DVecH `  K
) `  W )
8 lcfrlem5.k . . . . . . . . 9  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
96, 7, 8dvhlmod 36938 . . . . . . . 8  |-  ( ph  ->  U  e.  LMod )
109ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  R )  /\  X  e.  (  ._|_  `  ( L `  f )
) )  ->  U  e.  LMod )
118ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  R )  /\  X  e.  (  ._|_  `  ( L `  f )
) )  ->  ( K  e.  HL  /\  W  e.  H ) )
12 lcfrlem5.v . . . . . . . . 9  |-  V  =  ( Base `  U
)
13 lcfrlem5.f . . . . . . . . 9  |-  F  =  (LFnl `  U )
14 lcfrlem5.l . . . . . . . . 9  |-  L  =  (LKer `  U )
15 lcfrlem5.r . . . . . . . . . . . . 13  |-  ( ph  ->  R  e.  S )
16 eqid 2457 . . . . . . . . . . . . . 14  |-  ( Base `  D )  =  (
Base `  D )
17 lcfrlem5.s . . . . . . . . . . . . . 14  |-  S  =  ( LSubSp `  D )
1816, 17lssss 17709 . . . . . . . . . . . . 13  |-  ( R  e.  S  ->  R  C_  ( Base `  D
) )
1915, 18syl 16 . . . . . . . . . . . 12  |-  ( ph  ->  R  C_  ( Base `  D ) )
20 lcfrlem5.d . . . . . . . . . . . . 13  |-  D  =  (LDual `  U )
2113, 20, 16, 9ldualvbase 34952 . . . . . . . . . . . 12  |-  ( ph  ->  ( Base `  D
)  =  F )
2219, 21sseqtrd 3535 . . . . . . . . . . 11  |-  ( ph  ->  R  C_  F )
2322sselda 3499 . . . . . . . . . 10  |-  ( (
ph  /\  f  e.  R )  ->  f  e.  F )
2423adantr 465 . . . . . . . . 9  |-  ( ( ( ph  /\  f  e.  R )  /\  X  e.  (  ._|_  `  ( L `  f )
) )  ->  f  e.  F )
2512, 13, 14, 10, 24lkrssv 34922 . . . . . . . 8  |-  ( ( ( ph  /\  f  e.  R )  /\  X  e.  (  ._|_  `  ( L `  f )
) )  ->  ( L `  f )  C_  V )
26 eqid 2457 . . . . . . . . 9  |-  ( LSubSp `  U )  =  (
LSubSp `  U )
27 lcfrlem5.o . . . . . . . . 9  |-  ._|_  =  ( ( ocH `  K
) `  W )
286, 7, 12, 26, 27dochlss 37182 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  f )  C_  V
)  ->  (  ._|_  `  ( L `  f
) )  e.  (
LSubSp `  U ) )
2911, 25, 28syl2anc 661 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  R )  /\  X  e.  (  ._|_  `  ( L `  f )
) )  ->  (  ._|_  `  ( L `  f ) )  e.  ( LSubSp `  U )
)
30 lcfrlem5.a . . . . . . . 8  |-  ( ph  ->  A  e.  B )
3130ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  R )  /\  X  e.  (  ._|_  `  ( L `  f )
) )  ->  A  e.  B )
32 simpr 461 . . . . . . 7  |-  ( ( ( ph  /\  f  e.  R )  /\  X  e.  (  ._|_  `  ( L `  f )
) )  ->  X  e.  (  ._|_  `  ( L `  f )
) )
33 lcfrlem5.c . . . . . . . 8  |-  C  =  (Scalar `  U )
34 lcfrlem5.t . . . . . . . 8  |-  .x.  =  ( .s `  U )
35 lcfrlem5.b . . . . . . . 8  |-  B  =  ( Base `  C
)
3633, 34, 35, 26lssvscl 17727 . . . . . . 7  |-  ( ( ( U  e.  LMod  /\  (  ._|_  `  ( L `
 f ) )  e.  ( LSubSp `  U
) )  /\  ( A  e.  B  /\  X  e.  (  ._|_  `  ( L `  f
) ) ) )  ->  ( A  .x.  X )  e.  ( 
._|_  `  ( L `  f ) ) )
3710, 29, 31, 32, 36syl22anc 1229 . . . . . 6  |-  ( ( ( ph  /\  f  e.  R )  /\  X  e.  (  ._|_  `  ( L `  f )
) )  ->  ( A  .x.  X )  e.  (  ._|_  `  ( L `
 f ) ) )
3837ex 434 . . . . 5  |-  ( (
ph  /\  f  e.  R )  ->  ( X  e.  (  ._|_  `  ( L `  f
) )  ->  ( A  .x.  X )  e.  (  ._|_  `  ( L `
 f ) ) ) )
3938reximdva 2932 . . . 4  |-  ( ph  ->  ( E. f  e.  R  X  e.  ( 
._|_  `  ( L `  f ) )  ->  E. f  e.  R  ( A  .x.  X )  e.  (  ._|_  `  ( L `  f )
) ) )
405, 39mpd 15 . . 3  |-  ( ph  ->  E. f  e.  R  ( A  .x.  X )  e.  (  ._|_  `  ( L `  f )
) )
41 eliun 4337 . . 3  |-  ( ( A  .x.  X )  e.  U_ f  e.  R  (  ._|_  `  ( L `  f )
)  <->  E. f  e.  R  ( A  .x.  X )  e.  (  ._|_  `  ( L `  f )
) )
4240, 41sylibr 212 . 2  |-  ( ph  ->  ( A  .x.  X
)  e.  U_ f  e.  R  (  ._|_  `  ( L `  f
) ) )
4342, 2syl6eleqr 2556 1  |-  ( ph  ->  ( A  .x.  X
)  e.  Q )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819   E.wrex 2808    C_ wss 3471   U_ciun 4332   ` cfv 5594  (class class class)co 6296   Basecbs 14643  Scalarcsca 14714   .scvsca 14715   LModclmod 17638   LSubSpclss 17704  LFnlclfn 34883  LKerclk 34911  LDualcld 34949   HLchlt 35176   LHypclh 35809   DVecHcdvh 36906   ocHcoch 37175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-riotaBAD 34785
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-fal 1401  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-iin 4335  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-of 6539  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-undef 7020  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-n0 10817  df-z 10886  df-uz 11107  df-fz 11698  df-struct 14645  df-ndx 14646  df-slot 14647  df-base 14648  df-sets 14649  df-ress 14650  df-plusg 14724  df-mulr 14725  df-sca 14727  df-vsca 14728  df-0g 14858  df-preset 15683  df-poset 15701  df-plt 15714  df-lub 15730  df-glb 15731  df-join 15732  df-meet 15733  df-p0 15795  df-p1 15796  df-lat 15802  df-clat 15864  df-mgm 15998  df-sgrp 16037  df-mnd 16047  df-submnd 16093  df-grp 16183  df-minusg 16184  df-sbg 16185  df-subg 16324  df-cntz 16481  df-lsm 16782  df-cmn 16926  df-abl 16927  df-mgp 17268  df-ur 17280  df-ring 17326  df-oppr 17398  df-dvdsr 17416  df-unit 17417  df-invr 17447  df-dvr 17458  df-drng 17524  df-lmod 17640  df-lss 17705  df-lsp 17744  df-lvec 17875  df-lfl 34884  df-lkr 34912  df-ldual 34950  df-oposet 35002  df-ol 35004  df-oml 35005  df-covers 35092  df-ats 35093  df-atl 35124  df-cvlat 35148  df-hlat 35177  df-llines 35323  df-lplanes 35324  df-lvols 35325  df-lines 35326  df-psubsp 35328  df-pmap 35329  df-padd 35621  df-lhyp 35813  df-laut 35814  df-ldil 35929  df-ltrn 35930  df-trl 35985  df-tendo 36582  df-edring 36584  df-disoa 36857  df-dvech 36907  df-dib 36967  df-dic 37001  df-dih 37057  df-doch 37176
This theorem is referenced by:  lcfr  37413
  Copyright terms: Public domain W3C validator