![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcfrlem30 | Structured version Visualization version Unicode version |
Description: Lemma for lcfr 35199. (Contributed by NM, 6-Mar-2015.) |
Ref | Expression |
---|---|
lcfrlem17.h |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.o |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.u |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.p |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.z |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.n |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.a |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.k |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.x |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.y |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem17.ne |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem22.b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem24.t |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem24.s |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem24.q |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem24.r |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem24.j |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem24.ib |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem24.l |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem25.d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem28.jn |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem29.i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem30.m |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
lcfrlem30.c |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
lcfrlem30 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lcfrlem30.c |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | eqid 2462 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | lcfrlem25.d |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | lcfrlem30.m |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | lcfrlem17.h |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | lcfrlem17.u |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | lcfrlem17.k |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
8 | 5, 6, 7 | dvhlmod 34724 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
9 | lcfrlem17.o |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
10 | lcfrlem17.v |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | lcfrlem17.p |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
12 | lcfrlem24.t |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
13 | lcfrlem24.s |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
14 | lcfrlem24.r |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
15 | lcfrlem17.z |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
16 | lcfrlem24.l |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
17 | eqid 2462 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
18 | eqid 2462 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
19 | lcfrlem24.j |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
20 | lcfrlem17.x |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
21 | 5, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 20 | lcfrlem10 35166 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
22 | eqid 2462 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
23 | lcfrlem17.n |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
24 | lcfrlem17.a |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
25 | lcfrlem17.y |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
26 | lcfrlem17.ne |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
27 | lcfrlem22.b |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
28 | lcfrlem24.q |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
29 | lcfrlem24.ib |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
30 | lcfrlem28.jn |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
31 | lcfrlem29.i |
. . . . 5
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
32 | 5, 9, 6, 10, 11, 15, 23, 24, 7, 20, 25, 26, 27, 12, 13, 28, 14, 19, 29, 16, 3, 30, 31 | lcfrlem29 35185 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
33 | 5, 9, 6, 10, 11, 12, 13, 14, 15, 2, 16, 3, 17, 18, 19, 7, 25 | lcfrlem10 35166 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
34 | 2, 13, 14, 3, 22, 8, 32, 33 | ldualvscl 32751 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
35 | 2, 3, 4, 8, 21, 34 | ldualvsubcl 32768 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
36 | 1, 35 | syl5eqel 2544 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1680 ax-4 1693 ax-5 1769 ax-6 1816 ax-7 1862 ax-8 1900 ax-9 1907 ax-10 1926 ax-11 1931 ax-12 1944 ax-13 2102 ax-ext 2442 ax-rep 4531 ax-sep 4541 ax-nul 4550 ax-pow 4598 ax-pr 4656 ax-un 6615 ax-cnex 9626 ax-resscn 9627 ax-1cn 9628 ax-icn 9629 ax-addcl 9630 ax-addrcl 9631 ax-mulcl 9632 ax-mulrcl 9633 ax-mulcom 9634 ax-addass 9635 ax-mulass 9636 ax-distr 9637 ax-i2m1 9638 ax-1ne0 9639 ax-1rid 9640 ax-rnegex 9641 ax-rrecex 9642 ax-cnre 9643 ax-pre-lttri 9644 ax-pre-lttrn 9645 ax-pre-ltadd 9646 ax-pre-mulgt0 9647 ax-riotaBAD 32571 |
This theorem depends on definitions: df-bi 190 df-or 376 df-an 377 df-3or 992 df-3an 993 df-tru 1458 df-fal 1461 df-ex 1675 df-nf 1679 df-sb 1809 df-eu 2314 df-mo 2315 df-clab 2449 df-cleq 2455 df-clel 2458 df-nfc 2592 df-ne 2635 df-nel 2636 df-ral 2754 df-rex 2755 df-reu 2756 df-rmo 2757 df-rab 2758 df-v 3059 df-sbc 3280 df-csb 3376 df-dif 3419 df-un 3421 df-in 3423 df-ss 3430 df-pss 3432 df-nul 3744 df-if 3894 df-pw 3965 df-sn 3981 df-pr 3983 df-tp 3985 df-op 3987 df-uni 4213 df-int 4249 df-iun 4294 df-iin 4295 df-br 4419 df-opab 4478 df-mpt 4479 df-tr 4514 df-eprel 4767 df-id 4771 df-po 4777 df-so 4778 df-fr 4815 df-we 4817 df-xp 4862 df-rel 4863 df-cnv 4864 df-co 4865 df-dm 4866 df-rn 4867 df-res 4868 df-ima 4869 df-pred 5403 df-ord 5449 df-on 5450 df-lim 5451 df-suc 5452 df-iota 5569 df-fun 5607 df-fn 5608 df-f 5609 df-f1 5610 df-fo 5611 df-f1o 5612 df-fv 5613 df-riota 6282 df-ov 6323 df-oprab 6324 df-mpt2 6325 df-of 6563 df-om 6725 df-1st 6825 df-2nd 6826 df-tpos 7004 df-undef 7051 df-wrecs 7059 df-recs 7121 df-rdg 7159 df-1o 7213 df-oadd 7217 df-er 7394 df-map 7505 df-en 7601 df-dom 7602 df-sdom 7603 df-fin 7604 df-pnf 9708 df-mnf 9709 df-xr 9710 df-ltxr 9711 df-le 9712 df-sub 9893 df-neg 9894 df-nn 10643 df-2 10701 df-3 10702 df-4 10703 df-5 10704 df-6 10705 df-n0 10904 df-z 10972 df-uz 11194 df-fz 11820 df-struct 15178 df-ndx 15179 df-slot 15180 df-base 15181 df-sets 15182 df-ress 15183 df-plusg 15258 df-mulr 15259 df-sca 15261 df-vsca 15262 df-0g 15395 df-mre 15547 df-mrc 15548 df-acs 15550 df-preset 16228 df-poset 16246 df-plt 16259 df-lub 16275 df-glb 16276 df-join 16277 df-meet 16278 df-p0 16340 df-p1 16341 df-lat 16347 df-clat 16409 df-mgm 16543 df-sgrp 16582 df-mnd 16592 df-submnd 16638 df-grp 16728 df-minusg 16729 df-sbg 16730 df-subg 16869 df-cntz 17026 df-oppg 17052 df-lsm 17343 df-cmn 17487 df-abl 17488 df-mgp 17779 df-ur 17791 df-ring 17837 df-oppr 17906 df-dvdsr 17924 df-unit 17925 df-invr 17955 df-dvr 17966 df-drng 18032 df-lmod 18148 df-lss 18211 df-lsp 18250 df-lvec 18381 df-lsatoms 32588 df-lshyp 32589 df-lcv 32631 df-lfl 32670 df-ldual 32736 df-oposet 32788 df-ol 32790 df-oml 32791 df-covers 32878 df-ats 32879 df-atl 32910 df-cvlat 32934 df-hlat 32963 df-llines 33109 df-lplanes 33110 df-lvols 33111 df-lines 33112 df-psubsp 33114 df-pmap 33115 df-padd 33407 df-lhyp 33599 df-laut 33600 df-ldil 33715 df-ltrn 33716 df-trl 33771 df-tgrp 34356 df-tendo 34368 df-edring 34370 df-dveca 34616 df-disoa 34643 df-dvech 34693 df-dib 34753 df-dic 34787 df-dih 34843 df-doch 34962 df-djh 35009 |
This theorem is referenced by: lcfrlem35 35191 lcfrlem36 35192 |
Copyright terms: Public domain | W3C validator |