Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcfrlem16 Structured version   Unicode version

Theorem lcfrlem16 34578
Description: Lemma for lcfr 34605. (Contributed by NM, 8-Mar-2015.)
Hypotheses
Ref Expression
lcf1o.h  |-  H  =  ( LHyp `  K
)
lcf1o.o  |-  ._|_  =  ( ( ocH `  K
) `  W )
lcf1o.u  |-  U  =  ( ( DVecH `  K
) `  W )
lcf1o.v  |-  V  =  ( Base `  U
)
lcf1o.a  |-  .+  =  ( +g  `  U )
lcf1o.t  |-  .x.  =  ( .s `  U )
lcf1o.s  |-  S  =  (Scalar `  U )
lcf1o.r  |-  R  =  ( Base `  S
)
lcf1o.z  |-  .0.  =  ( 0g `  U )
lcf1o.f  |-  F  =  (LFnl `  U )
lcf1o.l  |-  L  =  (LKer `  U )
lcf1o.d  |-  D  =  (LDual `  U )
lcf1o.q  |-  Q  =  ( 0g `  D
)
lcf1o.c  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
lcf1o.j  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
lcflo.k  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
lcfrlem16.p  |-  P  =  ( LSubSp `  D )
lcfrlem16.g  |-  ( ph  ->  G  e.  P )
lcfrlem16.gs  |-  ( ph  ->  G  C_  C )
lcfrlem16.m  |-  E  = 
U_ g  e.  G  (  ._|_  `  ( L `  g ) )
lcfrlem16.x  |-  ( ph  ->  X  e.  ( E 
\  {  .0.  }
) )
Assertion
Ref Expression
lcfrlem16  |-  ( ph  ->  ( J `  X
)  e.  G )
Distinct variable groups:    x, w,  ._|_    x,  .0.    x, v, V    x,  .x.    v, k, w, x, X    x,  .+    x, R   
f, k, v, w, 
.+    f, F, k    g,
k, G    f, g, J, k    f, L, k    ._|_ , f, k, v    R, f, k, v    S, k    .x. , f, k, v, w    U, k    f, V, g, x    f, X    v,
g, w, x, X    ph, g, k
Allowed substitution hints:    ph( x, w, v, f)    C( x, w, v, f, g, k)    D( x, w, v, f, g, k)    P( x, w, v, f, g, k)    .+ ( g)    Q( x, w, v, f, g, k)    R( w, g)    S( x, w, v, f, g)    .x. ( g)    U( x, w, v, f, g)    E( x, w, v, f, g, k)    F( x, w, v, g)    G( x, w, v, f)    H( x, w, v, f, g, k)    J( x, w, v)    K( x, w, v, f, g, k)    L( x, w, v, g)    ._|_ ( g)    V( w, k)    W( x, w, v, f, g, k)    .0. ( w, v, f, g, k)

Proof of Theorem lcfrlem16
StepHypRef Expression
1 lcfrlem16.x . . . . 5  |-  ( ph  ->  X  e.  ( E 
\  {  .0.  }
) )
21eldifad 3426 . . . 4  |-  ( ph  ->  X  e.  E )
3 lcfrlem16.m . . . 4  |-  E  = 
U_ g  e.  G  (  ._|_  `  ( L `  g ) )
42, 3syl6eleq 2500 . . 3  |-  ( ph  ->  X  e.  U_ g  e.  G  (  ._|_  `  ( L `  g
) ) )
5 eliun 4276 . . 3  |-  ( X  e.  U_ g  e.  G  (  ._|_  `  ( L `  g )
)  <->  E. g  e.  G  X  e.  (  ._|_  `  ( L `  g
) ) )
64, 5sylib 196 . 2  |-  ( ph  ->  E. g  e.  G  X  e.  (  ._|_  `  ( L `  g
) ) )
7 lcf1o.s . . . . 5  |-  S  =  (Scalar `  U )
8 lcf1o.r . . . . 5  |-  R  =  ( Base `  S
)
9 lcf1o.f . . . . 5  |-  F  =  (LFnl `  U )
10 lcf1o.l . . . . 5  |-  L  =  (LKer `  U )
11 lcf1o.d . . . . 5  |-  D  =  (LDual `  U )
12 eqid 2402 . . . . 5  |-  ( .s
`  D )  =  ( .s `  D
)
13 lcf1o.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
14 lcf1o.u . . . . . . 7  |-  U  =  ( ( DVecH `  K
) `  W )
15 lcflo.k . . . . . . 7  |-  ( ph  ->  ( K  e.  HL  /\  W  e.  H ) )
1613, 14, 15dvhlvec 34129 . . . . . 6  |-  ( ph  ->  U  e.  LVec )
17163ad2ant1 1018 . . . . 5  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  U  e.  LVec )
18 lcfrlem16.g . . . . . . . 8  |-  ( ph  ->  G  e.  P )
19 eqid 2402 . . . . . . . . 9  |-  ( Base `  D )  =  (
Base `  D )
20 lcfrlem16.p . . . . . . . . 9  |-  P  =  ( LSubSp `  D )
2119, 20lssel 17904 . . . . . . . 8  |-  ( ( G  e.  P  /\  g  e.  G )  ->  g  e.  ( Base `  D ) )
2218, 21sylan 469 . . . . . . 7  |-  ( (
ph  /\  g  e.  G )  ->  g  e.  ( Base `  D
) )
2313, 14, 15dvhlmod 34130 . . . . . . . . 9  |-  ( ph  ->  U  e.  LMod )
249, 11, 19, 23ldualvbase 32144 . . . . . . . 8  |-  ( ph  ->  ( Base `  D
)  =  F )
2524adantr 463 . . . . . . 7  |-  ( (
ph  /\  g  e.  G )  ->  ( Base `  D )  =  F )
2622, 25eleqtrd 2492 . . . . . 6  |-  ( (
ph  /\  g  e.  G )  ->  g  e.  F )
27263adant3 1017 . . . . 5  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  g  e.  F
)
28 lcf1o.o . . . . . . 7  |-  ._|_  =  ( ( ocH `  K
) `  W )
29 lcf1o.v . . . . . . 7  |-  V  =  ( Base `  U
)
30 lcf1o.a . . . . . . 7  |-  .+  =  ( +g  `  U )
31 lcf1o.t . . . . . . 7  |-  .x.  =  ( .s `  U )
32 lcf1o.z . . . . . . 7  |-  .0.  =  ( 0g `  U )
33 lcf1o.q . . . . . . 7  |-  Q  =  ( 0g `  D
)
34 lcf1o.c . . . . . . 7  |-  C  =  { f  e.  F  |  (  ._|_  `  (  ._|_  `  ( L `  f ) ) )  =  ( L `  f ) }
35 lcf1o.j . . . . . . 7  |-  J  =  ( x  e.  ( V  \  {  .0.  } )  |->  ( v  e.  V  |->  ( iota_ k  e.  R  E. w  e.  (  ._|_  `  { x } ) v  =  ( w  .+  (
k  .x.  x )
) ) ) )
3615adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  G )  ->  ( K  e.  HL  /\  W  e.  H ) )
3723adantr 463 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  g  e.  G )  ->  U  e.  LMod )
3829, 9, 10, 37, 26lkrssv 32114 . . . . . . . . . . . . 13  |-  ( (
ph  /\  g  e.  G )  ->  ( L `  g )  C_  V )
3913, 14, 29, 28dochssv 34375 . . . . . . . . . . . . 13  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( L `  g )  C_  V
)  ->  (  ._|_  `  ( L `  g
) )  C_  V
)
4036, 38, 39syl2anc 659 . . . . . . . . . . . 12  |-  ( (
ph  /\  g  e.  G )  ->  (  ._|_  `  ( L `  g ) )  C_  V )
4140ralrimiva 2818 . . . . . . . . . . 11  |-  ( ph  ->  A. g  e.  G  (  ._|_  `  ( L `  g ) )  C_  V )
42 iunss 4312 . . . . . . . . . . 11  |-  ( U_ g  e.  G  (  ._|_  `  ( L `  g ) )  C_  V 
<-> 
A. g  e.  G  (  ._|_  `  ( L `  g ) )  C_  V )
4341, 42sylibr 212 . . . . . . . . . 10  |-  ( ph  ->  U_ g  e.  G  (  ._|_  `  ( L `  g ) )  C_  V )
443, 43syl5eqss 3486 . . . . . . . . 9  |-  ( ph  ->  E  C_  V )
4544ssdifd 3579 . . . . . . . 8  |-  ( ph  ->  ( E  \  {  .0.  } )  C_  ( V  \  {  .0.  }
) )
4645, 1sseldd 3443 . . . . . . 7  |-  ( ph  ->  X  e.  ( V 
\  {  .0.  }
) )
4713, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem10 34572 . . . . . 6  |-  ( ph  ->  ( J `  X
)  e.  F )
48473ad2ant1 1018 . . . . 5  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( J `  X )  e.  F
)
49 eqid 2402 . . . . . . 7  |-  (LSAtoms `  U
)  =  (LSAtoms `  U
)
50153ad2ant1 1018 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( K  e.  HL  /\  W  e.  H ) )
51 simp3 999 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  X  e.  ( 
._|_  `  ( L `  g ) ) )
52 eldifsni 4098 . . . . . . . . . . 11  |-  ( X  e.  ( E  \  {  .0.  } )  ->  X  =/=  .0.  )
531, 52syl 17 . . . . . . . . . 10  |-  ( ph  ->  X  =/=  .0.  )
54533ad2ant1 1018 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  X  =/=  .0.  )
55 eldifsn 4097 . . . . . . . . 9  |-  ( X  e.  ( (  ._|_  `  ( L `  g
) )  \  {  .0.  } )  <->  ( X  e.  (  ._|_  `  ( L `  g )
)  /\  X  =/=  .0.  ) )
5651, 54, 55sylanbrc 662 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  X  e.  ( (  ._|_  `  ( L `
 g ) ) 
\  {  .0.  }
) )
5713, 28, 14, 29, 32, 9, 10, 50, 27, 56, 49dochsnkrlem2 34490 . . . . . . 7  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  (  ._|_  `  ( L `  g )
)  e.  (LSAtoms `  U
) )
5813, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem15 34577 . . . . . . . . . 10  |-  ( ph  ->  X  e.  (  ._|_  `  ( L `  ( J `  X )
) ) )
59 eldifsn 4097 . . . . . . . . . 10  |-  ( X  e.  ( (  ._|_  `  ( L `  ( J `  X )
) )  \  {  .0.  } )  <->  ( X  e.  (  ._|_  `  ( L `  ( J `  X ) ) )  /\  X  =/=  .0.  ) )
6058, 53, 59sylanbrc 662 . . . . . . . . 9  |-  ( ph  ->  X  e.  ( ( 
._|_  `  ( L `  ( J `  X ) ) )  \  {  .0.  } ) )
6113, 28, 14, 29, 32, 9, 10, 15, 47, 60, 49dochsnkrlem2 34490 . . . . . . . 8  |-  ( ph  ->  (  ._|_  `  ( L `
 ( J `  X ) ) )  e.  (LSAtoms `  U
) )
62613ad2ant1 1018 . . . . . . 7  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  (  ._|_  `  ( L `  ( J `  X ) ) )  e.  (LSAtoms `  U
) )
63583ad2ant1 1018 . . . . . . 7  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  X  e.  ( 
._|_  `  ( L `  ( J `  X ) ) ) )
6432, 49, 17, 57, 62, 54, 51, 63lsat2el 32025 . . . . . 6  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  (  ._|_  `  ( L `  g )
)  =  (  ._|_  `  ( L `  ( J `  X )
) ) )
65 eqid 2402 . . . . . . 7  |-  ( (
DIsoH `  K ) `  W )  =  ( ( DIsoH `  K ) `  W )
66 lcfrlem16.gs . . . . . . . . . 10  |-  ( ph  ->  G  C_  C )
67663ad2ant1 1018 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  G  C_  C
)
68 simp2 998 . . . . . . . . 9  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  g  e.  G
)
6967, 68sseldd 3443 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  g  e.  C
)
7013, 65, 28, 14, 9, 10, 34, 50, 27lcfl5 34516 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( g  e.  C  <->  ( L `  g )  e.  ran  ( ( DIsoH `  K
) `  W )
) )
7169, 70mpbid 210 . . . . . . 7  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( L `  g )  e.  ran  ( ( DIsoH `  K
) `  W )
)
7213, 28, 14, 29, 30, 31, 7, 8, 32, 9, 10, 11, 33, 34, 35, 15, 46lcfrlem13 34575 . . . . . . . . . 10  |-  ( ph  ->  ( J `  X
)  e.  ( C 
\  { Q }
) )
7372eldifad 3426 . . . . . . . . 9  |-  ( ph  ->  ( J `  X
)  e.  C )
7413, 65, 28, 14, 9, 10, 34, 15, 47lcfl5 34516 . . . . . . . . 9  |-  ( ph  ->  ( ( J `  X )  e.  C  <->  ( L `  ( J `
 X ) )  e.  ran  ( (
DIsoH `  K ) `  W ) ) )
7573, 74mpbid 210 . . . . . . . 8  |-  ( ph  ->  ( L `  ( J `  X )
)  e.  ran  (
( DIsoH `  K ) `  W ) )
76753ad2ant1 1018 . . . . . . 7  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( L `  ( J `  X ) )  e.  ran  (
( DIsoH `  K ) `  W ) )
7713, 65, 28, 50, 71, 76doch11 34393 . . . . . 6  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( (  ._|_  `  ( L `  g
) )  =  ( 
._|_  `  ( L `  ( J `  X ) ) )  <->  ( L `  g )  =  ( L `  ( J `
 X ) ) ) )
7864, 77mpbid 210 . . . . 5  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( L `  g )  =  ( L `  ( J `
 X ) ) )
797, 8, 9, 10, 11, 12, 17, 27, 48, 78eqlkr4 32183 . . . 4  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  E. k  e.  R  ( J `  X )  =  ( k ( .s `  D ) g ) )
80233ad2ant1 1018 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  U  e.  LMod )
8180adantr 463 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G  /\  X  e.  (  ._|_  `  ( L `
 g ) ) )  /\  k  e.  R )  ->  U  e.  LMod )
82183ad2ant1 1018 . . . . . . . 8  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  G  e.  P
)
8382adantr 463 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G  /\  X  e.  (  ._|_  `  ( L `
 g ) ) )  /\  k  e.  R )  ->  G  e.  P )
84 simpr 459 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G  /\  X  e.  (  ._|_  `  ( L `
 g ) ) )  /\  k  e.  R )  ->  k  e.  R )
85 simpl2 1001 . . . . . . 7  |-  ( ( ( ph  /\  g  e.  G  /\  X  e.  (  ._|_  `  ( L `
 g ) ) )  /\  k  e.  R )  ->  g  e.  G )
867, 8, 11, 12, 20, 81, 83, 84, 85ldualssvscl 32176 . . . . . 6  |-  ( ( ( ph  /\  g  e.  G  /\  X  e.  (  ._|_  `  ( L `
 g ) ) )  /\  k  e.  R )  ->  (
k ( .s `  D ) g )  e.  G )
87 eleq1 2474 . . . . . 6  |-  ( ( J `  X )  =  ( k ( .s `  D ) g )  ->  (
( J `  X
)  e.  G  <->  ( k
( .s `  D
) g )  e.  G ) )
8886, 87syl5ibrcom 222 . . . . 5  |-  ( ( ( ph  /\  g  e.  G  /\  X  e.  (  ._|_  `  ( L `
 g ) ) )  /\  k  e.  R )  ->  (
( J `  X
)  =  ( k ( .s `  D
) g )  -> 
( J `  X
)  e.  G ) )
8988rexlimdva 2896 . . . 4  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( E. k  e.  R  ( J `  X )  =  ( k ( .s `  D ) g )  ->  ( J `  X )  e.  G
) )
9079, 89mpd 15 . . 3  |-  ( (
ph  /\  g  e.  G  /\  X  e.  ( 
._|_  `  ( L `  g ) ) )  ->  ( J `  X )  e.  G
)
9190rexlimdv3a 2898 . 2  |-  ( ph  ->  ( E. g  e.  G  X  e.  ( 
._|_  `  ( L `  g ) )  -> 
( J `  X
)  e.  G ) )
926, 91mpd 15 1  |-  ( ph  ->  ( J `  X
)  e.  G )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842    =/= wne 2598   A.wral 2754   E.wrex 2755   {crab 2758    \ cdif 3411    C_ wss 3414   {csn 3972   U_ciun 4271    |-> cmpt 4453   ran crn 4824   ` cfv 5569   iota_crio 6239  (class class class)co 6278   Basecbs 14841   +g cplusg 14909  Scalarcsca 14912   .scvsca 14913   0gc0g 15054   LModclmod 17832   LSubSpclss 17898   LVecclvec 18068  LSAtomsclsa 31992  LFnlclfn 32075  LKerclk 32103  LDualcld 32141   HLchlt 32368   LHypclh 33001   DVecHcdvh 34098   DIsoHcdih 34248   ocHcoch 34367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599  ax-riotaBAD 31977
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-fal 1411  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-iin 4274  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-tpos 6958  df-undef 7005  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-mulr 14923  df-sca 14925  df-vsca 14926  df-0g 15056  df-preset 15881  df-poset 15899  df-plt 15912  df-lub 15928  df-glb 15929  df-join 15930  df-meet 15931  df-p0 15993  df-p1 15994  df-lat 16000  df-clat 16062  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-grp 16381  df-minusg 16382  df-sbg 16383  df-subg 16522  df-cntz 16679  df-lsm 16980  df-cmn 17124  df-abl 17125  df-mgp 17462  df-ur 17474  df-ring 17520  df-oppr 17592  df-dvdsr 17610  df-unit 17611  df-invr 17641  df-dvr 17652  df-drng 17718  df-lmod 17834  df-lss 17899  df-lsp 17938  df-lvec 18069  df-lsatoms 31994  df-lshyp 31995  df-lfl 32076  df-lkr 32104  df-ldual 32142  df-oposet 32194  df-ol 32196  df-oml 32197  df-covers 32284  df-ats 32285  df-atl 32316  df-cvlat 32340  df-hlat 32369  df-llines 32515  df-lplanes 32516  df-lvols 32517  df-lines 32518  df-psubsp 32520  df-pmap 32521  df-padd 32813  df-lhyp 33005  df-laut 33006  df-ldil 33121  df-ltrn 33122  df-trl 33177  df-tgrp 33762  df-tendo 33774  df-edring 33776  df-dveca 34022  df-disoa 34049  df-dvech 34099  df-dib 34159  df-dic 34193  df-dih 34249  df-doch 34368  df-djh 34415
This theorem is referenced by:  lcfrlem27  34589  lcfrlem37  34599
  Copyright terms: Public domain W3C validator